scholarly journals Avian leukosis virus subgroup J infection influences the gut microbiota composition in chicken

2020 ◽  
Author(s):  
Yuan Chen ◽  
Jiajia Ni ◽  
Hongwei Li

Abstract Background: Avian leukosis virus (ALV) is a major cause of disease in poultry. Probiotics play a critical role in maintaining animal health. Studies have indicated that viral infection can alter the composition of the chicken gut microbiota. We hypothesized that ALV-J infection alters the probiotics composition in the chicken fecal bacterial microbiome. We performed high-throughput 16S rRNA gene sequencing and evaluated the gut microbiota profiles using feces from ALV-J-infected and healthy chickens.Results: The relative abundance at the phylum and species levels was calculated. The phylum Proteobacteria was more abundant in ALV-J-infected chickens than in healthy chickens. Additionally, the abundance of the opportunistic pathogen Propionibacterium acnes was significantly increased in ALV-J-infected chickens. Interestingly, ALV-J infection tended to be significantly decreased by the probiotics Lactobacillus helveticus and Lactobacillus reuteriConclusions: The study indicates that ALV-J infection significantly altered the gut microbiota distribution in chickens. Additionally, ALV-J infection significantly influenced the abundance of L. helveticus and L. reuteri in the chicken gut.

2020 ◽  
Author(s):  
Yuan Chen ◽  
Jiajia Ni ◽  
Hongwei Li

Abstract Background: Avian leukosis virus (ALV) is a major cause of disease in poultry. Probiotics play a critical role in animal health maintenance. Studies have indicated that viral infection can alter the composition of the chicken gut microbiota. We hypothesized that ALV-J infection alters the probiotics composition in chicken fecal bacterial microbiome. We performed high-throughput 16S rRNA gene sequencing and evaluated the gut microbiota profiles using feces from ALV-J-infected and healthy chickens. Results: The relative abundance at the phylum and species levels was calculated. The phylum Proteobacteria was more abundant in ALV-J-infected chickens than in healthy chickens. Additionally, the abundance of the opportunistic pathogen, Propionibacterium acnes, was significantly increased in ALV-J-infected chickens. Interestingly, ALV-J infection tended to be significantly decreased by the probiotics Lactobacillus helveticus and Lactobacillus reuteri. Conclusions: The study indicates that ALV-J infection significantly altered the gut microbiota distribution in chickens. Additionally, ALV-J infection significantly influenced the abundance of L. helveticus and L. reuteri in the chicken gut.


2020 ◽  
Author(s):  
Yuan Chen ◽  
Jiajia Ni ◽  
Hongwei Li

Abstract Background: Avian leukosis virus (ALV) is one of the major causes of disease in poultry. Probiotics play a critical role in animal health maintenance. Studies have indicated that viral infection can alter the composition of chicken gut flora. We hypothesized that the ALV-J infection could alter Probiotics composition in chicken fecal bacterial microbiome. To test is, we performed high-throughput 16S rRNA gene sequencing and evaluated gut flora profiles from the feces of ALV-J infected and healthy chickens. Results: Relative abundance at the phylum and species levels was calculated. The phylum Proteobacteria was expressed in higher abundance in ALV-J infected chickens than in healthy chickens. Additionally, the abundance of the opportunistic pathogen, Propionibacterium acnes, significantly increased in ALV-J infected chickens. Interestingly, ALV-J infection tended to be significantly decreased by the probiotics Lactobacillus helveticus and Lactobacillus reuteri. Conclusions: The study indicated ALV-J infection significantly altered the gut microbiota distribution in chickens. It also showed that ALV-J infection significantly influenced composition of the probiotics including Lactobacillus helveticus and Lactobacillus reuteri in chicken gut, which implied that to relieve avian leucosis subgroup J, microbiota-targeted therapies such as probiotic supplements are required.


2019 ◽  
Author(s):  
Yuan Chen ◽  
Jiajia Ni ◽  
Hongwei Li

Abstract Background: Avian leukosis virus (ALV) is one of the major causes of disease in poultry. Probiotics play a critical role in animal health maintenance. Studies have indicated that viral infection can alter the composition of chicken gut flora. We hypothesized that the ALV-J infection could alter Probiotics composition in chicken fecal bacterial microbiome. To test is, we performed high-throughput 16S rRNA gene sequencing and evaluated gut flora profiles from the feces of ALV-J infected and healthy chickens. Results: Relative abundance at the phylum and species levels was calculated. The phylum Proteobacteria was expressed in higher abundance in ALV-J infected chickens than in healthy chickens. Additionally, the abundance of the opportunistic pathogen, Propionibacterium acnes, significantly increased in ALV-J infected chickens. Interestingly, ALV-J infection tended to be significantly decreased by the probiotics Lactobacillus helveticus and Lactobacillus reuteri. Conclusions: The study indicated ALV-J infection significantly altered the gut microbiota distribution in chickens. It also showed that ALV-J infection significantly influenced composition of the probiotics including Lactobacillus helveticus and Lactobacillus reuteri in chicken gut, which implied that to relieve avian leucosis subgroup J, microbiota-targeted therapies such as probiotic supplements are required.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Marius Vital ◽  
Adina Chuang Howe ◽  
James M. Tiedje

ABSTRACTButyrate-producing bacteria have recently gained attention, since they are important for a healthy colon and when altered contribute to emerging diseases, such as ulcerative colitis and type II diabetes. This guild is polyphyletic and cannot be accurately detected by 16S rRNA gene sequencing. Consequently, approaches targeting the terminal genes of the main butyrate-producing pathway have been developed. However, since additional pathways exist and alternative, newly recognized enzymes catalyzing the terminal reaction have been described, previous investigations are often incomplete. We undertook a broad analysis of butyrate-producing pathways and individual genes by screening 3,184 sequenced bacterial genomes from the Integrated Microbial Genome database. Genomes of 225 bacteria with a potential to produce butyrate were identified, including many previously unknown candidates. The majority of candidates belong to distinct families within theFirmicutes, but members of nine other phyla, especially fromActinobacteria,Bacteroidetes,Fusobacteria,Proteobacteria,Spirochaetes, andThermotogae, were also identified as potential butyrate producers. The established gene catalogue (3,055 entries) was used to screen for butyrate synthesis pathways in 15 metagenomes derived from stool samples of healthy individuals provided by the HMP (Human Microbiome Project) consortium. A high percentage of total genomes exhibited a butyrate-producing pathway (mean, 19.1%; range, 3.2% to 39.4%), where the acetyl-coenzyme A (CoA) pathway was the most prevalent (mean, 79.7% of all pathways), followed by the lysine pathway (mean, 11.2%). Diversity analysis for the acetyl-CoA pathway showed that the same few firmicute groups associated with severalLachnospiraceaeandRuminococcaceaewere dominating in most individuals, whereas the other pathways were associated primarily withBacteroidetes.IMPORTANCEMicrobiome research has revealed new, important roles of our gut microbiota for maintaining health, but an understanding of effects of specific microbial functions on the host is in its infancy, partly because in-depth functional microbial analyses are rare and publicly available databases are often incomplete/misannotated. In this study, we focused on production of butyrate, the main energy source for colonocytes, which plays a critical role in health and disease. We have provided a complete database of genes from major known butyrate-producing pathways, using in-depth genomic analysis of publicly available genomes, filling an important gap to accurately assess the butyrate-producing potential of complex microbial communities from “-omics”-derived data. Furthermore, a reference data set containing the abundance and diversity of butyrate synthesis pathways from the healthy gut microbiota was established through a metagenomics-based assessment. This study will help in understanding the role of butyrate producers in health and disease and may assist the development of treatments for functional dysbiosis.


2021 ◽  
Author(s):  
Robin B. Guevarra ◽  
Jae Hyoung Cho ◽  
Jin Ho Cho ◽  
Minho Song ◽  
Jun Hyung Lee ◽  
...  

Abstract Background: Development of alternatives to in-feed antibiotics in the swine industry have been the focused of many pig gut microbiota studies to improve animal health. In this study, we evaluated the effects of probiotic Pediococcus acidilactici (PRO), prebiotic lactulose (PRE), and their synbiotic combination (SYN) on weaned pig gut microbiota using 16S rRNA gene sequencing in weaned piglets challenged with Shiga-toxin producing Escherichia coli (STEC). Results: Our data showed that prebiotics, probiotics and synbiotics improved the intestinal health in weaned piglets. No significant differences were observed in species richness and species diversity in weaned piglets fed prebiotics, probiotics and their synbiotic combination. However, beta diversity analysis revealed distinct clustering of the microbiota of according to dietary treatment and by oral challenge of STEC. At the phylum level, Firmicutes to Bacteroidetes ratio was lower in the dietary treatment groups than the control group. Oral supplementation of prebiotics, probiotics and synbiotics enriched the abundance of Prevotella and Roseburia. Succinivibrio was elevated in PRO group; however, Phascolarctobacterium was depleted with STEC challenge regardless of dietary treatment. Overall, our data showed that administration of synbiotics in piglets improved intestinal health through gut microbiota modulation. Conclusions: Our data indicated that prebiotics, probiotics and their synbiotic combination could promote intestinal health through gut microbiota modulation in weaned piglets.


2019 ◽  
Author(s):  
Shrikant S Bhute ◽  
Brisa Escobedo ◽  
Mina Haider ◽  
Yididya Mekonen ◽  
Dafhner Ferrer ◽  
...  

Abstract Background The Devils Hole Pupfish ( Cyprinodon diabolis ) frequently enters paradoxical anaerobism in response to endogenously produced or exogenously supplied ethanol in a dose-dependent manner. To decipher the role of the gut microbiota in ethanol-associated paradoxical anaerobism, gut microbial communities were depleted using a cocktail of antibiotics and profiled using 16S rRNA gene sequencing. Results Compared to the control group (n=12), microbiota-depleted fish (n=11) spent more time in paradoxical anaerobism. Our analysis indicated that the bacterial phyla Proteobacteria , Fusobacteria , Bacteroidetes , Firmicutes , Actinobacteria , Patescibacteria , and Dependentiae dominated the pupfish gut, which is consistent with other fish gut microbiota. Although the gut microbial communities with and without antibiotic treatment were similarly diverse, they were distinct and the greatest contribution to the dissimilarity (27.38%) was the common fish commensal Cetobacterium . We speculate that Cetobacterium , a primary fermenter, also consumes ethanol through secondary fermentation via an alcohol dehydrogenase and therefore regulates the transition from paradoxical anaerobism to aerobic respiration in fish. Conclusions This study reports the first characterization of gut microbial communities of critically endangered pupfish and suggests the microbiome may play a critical role in regulating metabolic strategies that are critical for survival in extremes of temperature and oxygen concentration. Given the wide distribution and abundance of Cetobacterium in warm-water fishes, this process may be of broad importance, and suggests that the microbiome be carefully considered for both conservation and aquaculture.


2020 ◽  
Author(s):  
Shrikant S Bhute ◽  
Brisa Escobedo ◽  
Mina Haider ◽  
Yididya Mekonen ◽  
Dafhney Ferrer ◽  
...  

Abstract Background Pupfish frequently enter paradoxical anaerobism in response to endogenously produced or exogenously supplied ethanol in a dose-dependent manner. To decipher the role of the gut microbiota in ethanol-associated paradoxical anaerobism, gut microbial communities were depleted using a cocktail of antibiotics and profiled using 16S rRNA gene sequencing. Results Compared to the control group (n=12), microbiota-depleted fish (n=12) spent more time in paradoxical anaerobism. Our analysis indicated that the bacterial phyla Proteobacteria, Fusobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Patescibacteria, and Dependentiae dominated the pupfish gut, which is consistent with other fish gut microbiota. Although the gut microbial communities with and without antibiotic treatment were similarly diverse, they were distinct and the greatest contribution to the dissimilarity (27.38%) was the common fish commensal Cetobacterium. Conclusions This study reports the first characterization of gut microbial communities of pupfish and suggests the microbiome may play a critical role in regulating metabolic strategies that are critical for survival in extremes of temperature and oxygen concentration. We speculate that Cetobacterium, a primary fermenter, also consumes ethanol through secondary fermentation via an alcohol dehydrogenase and therefore regulates the transition from paradoxical anaerobism to aerobic respiration in fish. Given the wide distribution and abundance of Cetobacterium in warm-water fishes, this process may be of broad importance, and suggests that the microbiome be carefully considered for both conservation and aquaculture.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 254
Author(s):  
Ying Wang ◽  
Jianqing Zhu ◽  
Jie Fang ◽  
Li Shen ◽  
Shuojia Ma ◽  
...  

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Palmas ◽  
Silvia Pisanu ◽  
Veronica Madau ◽  
Emanuela Casula ◽  
Andrea Deledda ◽  
...  

AbstractIn the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shenhai Gong ◽  
Yinglin Feng ◽  
Yunong Zeng ◽  
Huanrui Zhang ◽  
Meiping Pan ◽  
...  

Abstract Background Gut microbiota has been reported to be disrupted by cisplatin, as well as to modulate chemotherapy toxicity. However, the precise role of intestinal microbiota in the pathogenesis of cisplatin hepatotoxicity remains unknown. Methods We compared the composition and function of gut microbiota between mice treated with and without cisplatin using 16S rRNA gene sequencing and via metabolomic analysis. For understanding the causative relationship between gut dysbiosis and cisplatin hepatotoxicity, antibiotics were administered to deplete gut microbiota and faecal microbiota transplantation (FMT) was performed before cisplatin treatment. Results 16S rRNA gene sequencing and metabolomic analysis showed that cisplatin administration caused gut microbiota dysbiosis in mice. Gut microbiota ablation by antibiotic exposure protected against the hepatotoxicity induced by cisplatin. Interestingly, mice treated with antibiotics dampened the mitogen-activated protein kinase pathway activation and promoted nuclear factor erythroid 2-related factor 2 nuclear translocation, resulting in decreased levels of both inflammation and oxidative stress in the liver. FMT also confirmed the role of microbiota in individual susceptibility to cisplatin-induced hepatotoxicity. Conclusions This study elucidated the mechanism by which gut microbiota mediates cisplatin hepatotoxicity through enhanced inflammatory response and oxidative stress. This knowledge may help develop novel therapeutic approaches that involve targeting the composition and metabolites of microbiota.


Sign in / Sign up

Export Citation Format

Share Document