scholarly journals Quantification of Arterial, Venous, and Cerebrospinal Fluid Flow Dynamics by Magnetic Resonance Imaging Under Simulated Micro-Gravity Conditions: A Prospective Cohort Study

2020 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that under microgravity conditions simulated by HDT, increased pressure in the intracranial space would alter intracranial CSF and venous flow dynamics by causing: 1) venous congestion reflected by increased venous cross-sectional area; and 2) a decrease in cardiac-related CSF flow oscillations. Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT. Results: We found a significant increase in venous cross-sectional area with HDT (p=0.005), indicating venous congestion, along with a decrease in all CSF flow parameters [systolic peak flow (p=0.009), peak-to-peak pulse amplitude (p=0.001), and stroke volume (p=0.10)]. Arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased. Conclusions: These results collectively demonstrate that acute application of 15° HDT caused a reduction in CSF flow parameters (systolic peak flow and peak-to-peak pulse amplitude), coupled with an increase in venous CSA suggesting increased venous congestion with HDT.

2020 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that under microgravity conditions simulated by HDT, increased pressure in the intracranial space would alter intracranial CSF and venous flow dynamics by causing: 1) increased venous pressure reflected by increased venous cross-sectional area; and 2) a decrease in cardiac-related pulsatile CSF flow.Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT.Results: We found a significant increase in venous cross-sectional area with HDT (p=0.005), indicating increased venous pressure, along with a decrease in all CSF flow variables [systolic peak flow (p=0.009), and peak-to-peak pulse amplitude (p=0.001)]. Arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased.Conclusions: These results collectively demonstrate that acute application of 15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude), coupled with an increase in venous CSA suggesting increased venous pressure with HDT.


2020 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that microgravity conditions simulated by HDT would result in increased intracranial pressure (ICP) reflected by increases in CSF pulsatile flow. Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT.Results: We found a decrease in all CSF flow variables [systolic peak flow (p=0.009), and peak-to-peak pulse amplitude (p=0.001)]. Cerebral arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased. We additionally found a decrease in average cerebral arterial flow (p=0.040). Finally, a significant increase in cerebral venous cross-sectional area with HDT (p=0.005) was also observed. Conclusions: These results collectively demonstrate that acute application of 15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude) which, when coupled with a decrease in average cerebral arterial flow, systolic peak flow, and peak-to-peak pulse amplitude, is consistent with a decrease in cardiac-related pulsatile CSF flow. These results suggest that decreases in cerebral arterial inflow were the principal drivers of decreases in CSF pulsatile flow.


2021 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that microgravity conditions simulated by acute HDT would result in increases in CSF pulsatile flow. Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT.Results: We found a decrease in all CSF flow variables [systolic peak flow (p=0.009), and peak-to-peak pulse amplitude (p=0.001)]. Cerebral arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased. We additionally found a decrease in average cerebral arterial flow (p=0.040). Finally, a significant increase in cerebral venous cross-sectional area under HDT (p=0.005) was also observed. Conclusions: These results collectively demonstrate that acute application of -15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude) which, when coupled with a decrease in average cerebral arterial flow, systolic peak flow, and peak-to-peak pulse amplitude, is consistent with a decrease in cardiac-related pulsatile CSF flow. These results suggest that decreases in cerebral arterial inflow were the principal drivers of decreases in CSF pulsatile flow.


2020 ◽  
Author(s):  
Arslan Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
Christopher Ross Ethier

Abstract Background: Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that microgravity conditions simulated by HDT would result in increased intracranial pressure (ICP) reflected by increases in CSF pulsatile flow.Methods: In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT.Results: We found a decrease in all CSF flow variables [systolic peak flow (p=0.009), and peak-to-peak pulse amplitude (p=0.001)]. Cerebral arterial average flow (p=0.04), systolic peak flow (p=0.04), and peak-to-peak pulse amplitude (p=0.02) all also significantly decreased. We additionally found a decrease in average cerebral arterial flow (p=0.040). Finally, a significant increase in cerebral venous cross-sectional area with HDT (p=0.005) was also observed.Conclusions: These results collectively demonstrate that acute application of 15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude) which, when coupled with a decrease in average cerebral arterial flow, systolic peak flow, and peak-to-peak pulse amplitude, is consistent with a decrease in cardiac-related pulsatile CSF flow. These results suggest that decreases in cerebral arterial inflow were the principal drivers of decreases in CSF pulsatile flow.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Arslan M. Zahid ◽  
Bryn Martin ◽  
Stephanie Collins ◽  
John N. Oshinski ◽  
C. Ross Ethier

Abstract Background Astronauts undergoing long-duration spaceflight are exposed to numerous health risks, including Spaceflight-Associated Neuro-Ocular Syndrome (SANS), a spectrum of ophthalmic changes that can result in permanent loss of visual acuity. The etiology of SANS is not well understood but is thought to involve changes in cerebrovascular flow dynamics in response to microgravity. There is a paucity of knowledge in this area; in particular, cerebrospinal fluid (CSF) flow dynamics have not been well characterized under microgravity conditions. Our study was designed to determine the effect of simulated microgravity (head-down tilt [HDT]) on cerebrovascular flow dynamics. We hypothesized that microgravity conditions simulated by acute HDT would result in increases in CSF pulsatile flow. Methods In a prospective cohort study, we measured flow in major cerebral arteries, veins, and CSF spaces in fifteen healthy volunteers using phase contrast magnetic resonance (PCMR) before and during 15° HDT. Results We found a decrease in all CSF flow variables [systolic peak flow (p = 0.009), and peak-to-peak pulse amplitude (p = 0.001)]. Cerebral arterial average flow (p = 0.04), systolic peak flow (p = 0.04), and peak-to-peak pulse amplitude (p = 0.02) all also significantly decreased. We additionally found a decrease in average cerebral arterial flow (p = 0.040). Finally, a significant increase in cerebral venous cross-sectional area under HDT (p = 0.005) was also observed. Conclusions These results collectively demonstrate that acute application of −15° HDT caused a reduction in CSF flow variables (systolic peak flow and peak-to-peak pulse amplitude) which, when coupled with a decrease in average cerebral arterial flow, systolic peak flow, and peak-to-peak pulse amplitude, is consistent with a decrease in cardiac-related pulsatile CSF flow. These results suggest that decreases in cerebral arterial inflow were the principal drivers of decreases in CSF pulsatile flow.


Author(s):  
Pankaj Arora ◽  
Kanica Rawat ◽  
Rajiv Azad ◽  
Kehkashan Chouhan

Abstract Objective Aim of this study is to evaluate the effect of craniospinal interventions on cerebrospinal fluid (CSF) flow hydrodynamics and study the correlation of postoperative changes in flow alteration with clinical outcome. Materials and Methods Fifty patients who underwent various craniospinal procedures were studied using conventional and phase-contrast magnetic resonance imaging (PCMRI) protocol. CSF flow quantification was performed at cerebral aqueduct, foramen magnum, C2–3, and D12–L1 vertebral levels with site showing maximal alteration of CSF flow dynamics considered as the region of interest. Velocity encoding was kept at 20 cm/s. Patients with pathology atcraniovertebral junction were considered separately (group I) from others (group II) due to different flow dynamics. Follow-up scans were performed after an interval of 1 month for temporal evaluation of changes in CSF flow dynamics. Results Patients in both groups showed a significant change in peak CSF velocity postoperatively (mean change of 1.34 cm/s in group I and 0.28 cm/s in group II) with bidirectional improvement in flow on cine-phase-contrast qualitative images. Regional pain (82%) and headache (46%) were seen in most of the patients preoperatively. Postoperatively clinical symptoms improved in 59.5%, static in 26.2%, and worsened in 14.3%. In both the groups, an improvement in clinical symptomatology had significant correlation with mean changes in peak CSF velocity postoperatively (p = 0.04 in both groups). Conclusion PCMRI can effectively evaluate changes in CSF flow noninvasively both pre- and postoperatively. This may have potential role in determining clinical outcome and prognosis of patients undergoing procedures in craniospinal axis.


2020 ◽  
pp. 219256822097914
Author(s):  
Longjie Wang ◽  
Hui Wang ◽  
Zhuoran Sun ◽  
Zhongqiang Chen ◽  
Chuiguo Sun ◽  
...  

Study Design: Case-control study. Objectives: To investigate the incidence of symptomatic spinal epidural hematoma (SSEH) and recognize its risk factors in a cohort of patients undergoing posterior thoracic surgery in isolation. Methods: From January 2010 to December 2019, patients who developed SSEH after posterior thoracic surgery and underwent hematoma evacuation were enrolled. For each SSEH patient, 2 or 3 controls who did not develop SSEH and underwent the same procedures with similar complexity at the same section of the thoracic spine in the same period were collected. The preoperative and intraoperative factors, blood pressure-related factors and radiographic parameters were collected to identify possible risk factors by comparing between the 2 groups. Results: A total of 24 of 1612 patients (1.49%) were identified as having SSEH after thoracic spinal surgery. Compared to the control group (53 patients), SSEH patients had significant differences in the APTT (p = 0.028), INR (p = 0.009), ratio of previous spinal surgery (p = 0.012), ratio of cerebrospinal fluid leakage (p = 0.004), thoracic kyphosis (p<0.05), local kyphosis angle (p<0.05), epidural fat ratio at T7 (p = 0.003), occupying ratio of the cross-sectional area (p<0.05) and spinal epidural venous plexus grade (p<0.05). Multiple logistic regression analysis revealed 3 risk factors for SSEH: cerebrospinal fluid leakage, the local kyphosis angle (>8.77°) and the occupying ratio of the cross-sectional area (>49.58%). Conclusions: The incidence of SSEH was 1.49% in posterior thoracic spinal surgeries. Large local kyphosis angle (>8.77°), high occupying ratio of cross-sectional area (>49.58%) and cerebrospinal fluid leakage were identified as risk factors for SSEH.


2003 ◽  
Vol 98 (3) ◽  
pp. 578-583 ◽  
Author(s):  
Daniel J. Tomes ◽  
Leslie C. Hellbusch ◽  
L. Russell Alberts

Object. Cerebrospinal fluid (CSF) shunt system malfunction due to silastic tubing fracture necessitates revision surgery in shunt-dependent individuals. The goal of this study was to examine the mechanical stretching and breaking characteristics of new and used CSF shunt tubing catheters to determine if any inherent physical properties predispose the tubing to fracture. Methods. Fifty-millimeter segments of new and retrieved (used) CSF shunt tubing were stretched to 120 mm in a hydraulic press to determine modulus values (modulus = stress/strain) and to measure permanent tubing deformation imparted by the applied stress and strain. Similar 50-mm tubing segments were also stretched in an electromechanical material testing system until fracture occurred; the force and strain needed to break the tubing was recorded at the time of failure. The results demonstrate that shunt tubing with a greater cross-sectional area requires greater force to fracture, and that catheters become weaker the longer they are implanted. Barium-impregnated shunt tubing, compared with translucent tubing, appears to require less applied stress and strain to break and may fracture more easily in vivo. The variety of modulus values obtained for the new catheters tested indicates that the various companies may be using materials of different quality in tubing manufacture. Conclusions. A CSF shunt catheter design that incorporates tubing with a greater cross-sectional area may lead to fewer fractures of indwelling catheters and a reduction in shunt revision surgery.


Sign in / Sign up

Export Citation Format

Share Document