scholarly journals Augmented Reality in the Formation of Minimal Incision Podiatric Surgery.

2020 ◽  
Author(s):  
Javier Ferrer-Torregrosa ◽  
Rubén Lorca-Gutiérrez ◽  
Luis Miguel Martí-Martínez ◽  
Nadia Fernández-Ehrling ◽  
Miguel Angel Jiménez-Rodríguez

Abstract BACKGROUND: This project shows that the use of augmented reality (AR) technology in the study of podiatric surgery has a positive impact on student outcomes. AR technology can help to enrich the information that provides elements such as X-rays or other diagnostic tools.METHODS : A didactic material with augmented reality was created through the use of markers for the course subjects of Surgical Techniques II, e.g., the topic of hallux valgus surgery, and was compared with the didactic material for 5th metatarsal surgery using PowerPoint and video. The comparison was assessed by a validated questionnaire after providing 2 hours of teaching for each of the subjects to 80 students in a master of surgery program during the 2013-2017 academic years.RESULTS: Analysis of the components of the questionnaire showed that component 1. training, attention and motivation; component 2. freelance work; and component 4. 3D compression were statistically significant at p < 0.05. However, component 3, which compared the technologies used with cadaveric material, was not statistically significant regarding any of its items.CONCLUSION: The current study shows that using augmented reality technology for the study of minimally invasive surgery of the foot increases the attention, the motivation and therefore the learning of the students, in addition to providing three-dimensional images of the surgical movements that are more accurate regarding reality.

2019 ◽  
Vol 109 (3) ◽  
pp. 207-214
Author(s):  
Javier Ferrer-Torregrosa ◽  
Sergio Garcia-Vicente ◽  
Nadia Fernández-Ehrling ◽  
Javier Torralba-Estellés ◽  
Carlos Barrios

Background: Precision in minimal-incision surgery allows surgeons to achieve accurate osteotomies and patients to avoid risks. Herein, a surgical guide for the foot is designed and validated in vitro using resin foot models for hallux abducto valgus surgery. Methods: Three individuals with different experience levels (an undergraduate student, a master's student, and an experienced podiatric physician) performed an Akin osteotomy, a Reverdin osteotomy, and a basal osteotomy of the first metatarsal. Results: The average measurements of each osteotomy and the angle of the basal osteotomy do not reveal significant differences among the three surgeons. A shorter deviation from the planned measurements has been observed in variables corresponding to the Akin osteotomy (the maximum deviation in the measurement of the distance from the proximal medial end of the Akin osteotomy to the first metatarsophalangeal joint interline was 1.67 mm, and the maximum deviation from the proximal lateral end of the Akin osteotomy to the first metatarsophalangeal joint interline was 1.00 mm). As for the Reverdin osteotomies, the maximum deviations in the measurement of the distance from the proximal medial end of the osteotomy to the first metatarsophalangeal joint interline were 3.60 and 3.53 mm in the expert and undergraduate surgeons, respectively. All of the osteotomies were precise among the groups, reducing the learning curve to the maximum. Conclusions: The three-dimensional–printed prototype has been proven effective in guiding surgeons to perform different types of osteotomies. Minimal deviations from the predefined osteotomies were found among the three surgeons.


2019 ◽  
Vol 17 (4) ◽  
pp. 36-53
Author(s):  
Koun Tem Sun ◽  
Meng Hsun Chen

From random interviews of mathematics teachers, the researchers are conscious that students have difficulties in solving problems regarding compound body volume measurement. The researchers found the main factor involved in the difficulties was incomplete spatial concepts. Augmented reality (AR), which is a kind of educational technology, has been widely applied in the educational field in recent years. AR provides two- or three-dimensional objects and/or information and interaction with them. These characteristics can compensate for the insufficient characterization of compound-body volume in traditional education environments. The paper studies evaluation in utilizing free augmented reality to learn volumetric measurement of compound bodies to complete spatial concepts as well as improve the students' learning performance. The finding suggests that the positive impact on visualization and interaction as well as attitude lead students to be more engaged in learning activities with less cognitive effort, resulting in better learning performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bassam Shouman ◽  
Ayman Ahmed Ezzat Othman ◽  
Mohamed Marzouk

PurposeMobile augmented reality (MAR) is one of the advanced three-dimensional (3D) representation tools that has been recently utilized in the construction industry. This paper aims to assess a user’s involvement levels through MAR application that has been experimented against traditional involvement techniques through an existing facility, plan re-designing scenario.Design/methodology/approachThrough reviewing related literature studies in the MAR field, an application has been developed that can superimpose real design alternatives on paper-based markers, allowing for flexible wall positioning, interior and exterior wall material application. As such, an enhanced user involvement experience is created. To measure user involvement levels, the application is experimented with 33 participants having the British University in Egypt’s library building as a case study, followed by survey questionnaires to gather and evaluate user responses.FindingsThe results of the analyzed data using SPSS indicated that MAR showed a positive impact on enhancing user involvement and better understanding of design projects. It also allowed users to produce different design alternatives in comparison to the traditional involvement approaches where users showed low design interaction and understanding.Originality/valueThe interactive features of the proposed application facilitate implementing ideas in design of construction projects that require user involvement.


Author(s):  
John C. Russ

Three-dimensional (3D) images consisting of arrays of voxels can now be routinely obtained from several different types of microscopes. These include both the transmission and emission modes of the confocal scanning laser microscope (but not its most common reflection mode), the secondary ion mass spectrometer, and computed tomography using electrons, X-rays or other signals. Compared to the traditional use of serial sectioning (which includes sequential polishing of hard materials), these newer techniques eliminate difficulties of alignment of slices, and maintain uniform resolution in the depth direction. However, the resolution in the z-direction may be different from that within each image plane, which makes the voxels non-cubic and creates some difficulties for subsequent analysis.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1271
Author(s):  
Andreas Koenig ◽  
Leonie Schmohl ◽  
Johannes Scheffler ◽  
Florian Fuchs ◽  
Michaela Schulz-Siegmund ◽  
...  

The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (µXCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single µXCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during µXCT measurement at high doses can lead to changes in the structure and properties of certain polymers.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Liangxiao Bao ◽  
Shengwei Rong ◽  
Zhanjun Shi ◽  
Jian Wang ◽  
Yang Zhang

Abstract Background Femoral posterior condylar offset (PCO) and posterior tibial slope (PTS) are important for postoperative range of motion after total knee arthroplasty (TKA). However, normative data of PCO and PTS and the correlation between them among healthy populations remain to be elucidated. The purpose of this study was to determine PCO and PTS in normal knees, and to identify the correlation between them. Methods Eighty healthy volunteers were recruited. CT scans were performed followed by three-dimensional reconstruction. PCO and PTS were measured and analyzed, as well as the correlation between them. Results PTS averaged 6.78° and 6.11°, on the medial and lateral side respectively (P = 0.002). Medial PCO was greater than lateral (29.2 vs. 23.8 mm, P <  0.001). Both medial and lateral PCO of male were larger than female. On the contrary, male medial PTS was smaller than female, while there was no significant difference of lateral PTS between genders. There was an inverse correlation between medial PCO and PTS, but not lateral. Conclusions Significant differences exhibited between medial and lateral compartments, genders, and among individuals. An inverse correlation exists between PCO and PTS in the medial compartment. These results improve our understanding of the morphology and biomechanics of normal knees, and subsequently for optimising prosthetic design and surgical techniques.


BMC Surgery ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haiyang Yang ◽  
Gang Bai ◽  
Yongli Zhang ◽  
Guolong Chen ◽  
Lei Duan ◽  
...  

Abstract Background There are few articles about the surgical techniques of thalamic glioma and the lesions in the basal ganglia area. According to three existing cases and the literature review (Twelve articles were summarized which mainly described the surgical techniques), we discuss the surgical characteristics of lesions of the thalamus and basal ganglia area and summarize the relevant surgical skills. Case presentation Of the three cases, two were thalamic gliomas and one was brain abscess in basal ganglia. According to the three-dimensional concept of the “Four Walls, Two Poles”, lesions of the thalamus and basal ganglia were surgically removed, and the operative effect was analysed by relevant surgical techniques. Surgical resection of the lesions of the thalamus and basal ganglia area according to the three-dimensional concept of the “Four Walls, Two Poles” has achieved good surgical results. Relevant surgical techniques, such as the use of retractors, the use of aspirators, the choice of surgical approaches, and the haemostasis strategy, also played an important role in the operation process. Conclusions In the presented three cases the three-dimensional concept of the “Four Walls, Two Poles” allowed for safe surgical resection of lesions of the thalamus and basal ganglia.


2020 ◽  
Author(s):  
Joseph W. Tringe ◽  
Michael B. Zellner ◽  
Clifton H. Mortensen ◽  
Franco J. Gagliardi ◽  
Jerel A. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document