scholarly journals Is Micro X-ray Computer Tomography a Suitable Non-Destructive Method for the Characterisation of Dental Materials?

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1271
Author(s):  
Andreas Koenig ◽  
Leonie Schmohl ◽  
Johannes Scheffler ◽  
Florian Fuchs ◽  
Michaela Schulz-Siegmund ◽  
...  

The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (µXCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single µXCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during µXCT measurement at high doses can lead to changes in the structure and properties of certain polymers.

Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


2016 ◽  
Vol 23 (5) ◽  
pp. 1210-1215 ◽  
Author(s):  
Jonathan Logan ◽  
Ross Harder ◽  
Luxi Li ◽  
Daniel Haskel ◽  
Pice Chen ◽  
...  

Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.


2010 ◽  
pp. 109-117 ◽  
Author(s):  
Neda Motchurova-Dekova ◽  
David Harper

Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In ?Rhynchonella? flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.


Author(s):  
Nirmal Chandra Sukul ◽  
Tandra Sarkar ◽  
Atheni Konar ◽  
Md. Amir Sohel ◽  
Asmita Sengupta ◽  
...  

Aqueous ethanol is the standard medium for all drugs used in homeopathy. X-ray and Magnetispoli ambo are 2 homeopathic drugs prepared by exposure of aqueous ethanol to x-rays and static magnetic field, respectively.Mother tinctures (MT)weresuccessively diluted with solvent 1:100 and succussed in several steps to prepare centesimal potencies 8 cH, 14 cH and 32 cH. The solvent was processed in the same way. Although identical in chemical composition (0.03 molar ethanol) and water content (96%) these preparations like the Mother tinctures and three potencies of X-ray and Magnetispoli amboexhibit different therapeutic pathological effects. Potency 8cH of each preparation was diluted with water to reach concentrations 4%, 20%, 40% and 80% ethanol. The aim of the study was to establish whether these potencies exhibited variation in free water molecules. Differential Scanning Calorimetry (DSC) of MT and potencies exhibited almost similar freezing and melting points, but they remarkably differed in freezing and melting enthalpy and free water molecules. The various dilutions of potency 8cH exhibited variation in enthalpies and free water molecules, being this variation independent of the amount of water added. We conclude that exposure of aqueous ethanol to x-rays and magnetic field, with subsequent dilution and agitation induces changes in the solvent involving free water molecules. All X-ray and Magnetispoli ambo potencies were analyzed by means of Raman spectroscopy for free water molecules. The results were compared to the ones of DSC, being more or less similar.


Author(s):  
David Blow

Diffraction refers to the effects observed when light is scattered into directions other than the original direction of the light, without change of wavelength. An X-ray photon may interact with an electron and set the electron oscillating with the X-ray frequency. The oscillating electron may radiate an X-ray photon of the same wavelength, in a random direction, when it returns to its unexcited state. Other processes may also occur, akin to fluorescence, which emit X-rays of longer wavelengths, but these processes do not give diffraction effects. Just as we see a red card because red light is scattered off the card into our eyes, objects are observed with X-rays because an illuminating X-ray beam is scattered into the X-ray detector. Our eye can analyse details of the card because its lens forms an image on the retina. Since no X-ray lens is available, the scattered X-ray beam cannot be converted directly into an image. Indirect computational procedures have to be used instead. X-rays are penetrating radiation, and can be scattered from electrons throughout the whole scattering object, while light only shows the external shape of an opaque object like a red card. This allows X-rays to provide a truly three-dimensional image. When X-rays pass near an atom, only a tiny fraction of them is scattered: most of the X-rays pass further into the object, and usually most of them come straight out the other side of the whole object. In forming an image, these ‘straight through’ X-rays tell us nothing about the structure, and they are usually captured by a beam stop and ignored. This chapter begins by explaining that the diffraction of light or X-rays can provide a precise physical realization of Fourier’s method of analysing a regularly repeating function. This method may be used to study regularly repeating distributions of scattering material. Beginning in one dimension, examples will be used to bring out some fundamental features of diffraction analysis. Graphic examples of two-dimensional diffraction provide further demonstrations. Although the analysis in three dimensions depends on exactly the same principles, diffraction by a three-dimensional crystal raises additional complications.


Author(s):  
Martin E. Atkinson

The radiographs most frequently taken in general dental practice are of the teeth and their immidiate supporting tissues for detection of dental caries or assessment of bone loss in periodontal disease. Intraoral radiographs are taken by placing the X-ray-sensitive film or receptor in the mouth close to the teeth being investigated. Extraoral radiographs use larger films or receptors positioned externally and produce a view of the entire dentition and its supporting structures on a single film; they are used to ascertain the state of development of the dentitions prior to orthodontic treatment, for example. Dental panoramic tomographs (DPTs) are the most frequent extraoral radiographs. A radiograph is a negative photographic record. Dense structures such as bone are designated as radio-opaque; they absorb some X-rays and appear white on radiographs. More X-rays pass through less dense radiolucent structures such as air-filled cavities which show up as black areas. The contrast between different tissues of the structures which the X-ray beam passes through is determined by their radiodensity which, in turn, is largely due to their content of metallic elements. Calcium and iron are the prevalent heavy metals in the body. Calcium is combined with phosphate to form hydroxyapatite crystals in bones and mineralized tissues in teeth. Iron is present in haemoglobin in blood, but only large concentrations of blood, such as those found within the heart chambers, show up on X-rays. In sequence from densest to most lucent, the radiodensity of the dental and periodontal tissues are: enamel, dentine, cementum, compact bone, cancellous bone, demineralized carious enamel and dentine, dental soft tissues such as pulp and periodontal ligament, and air; gold and silver–mercury amalgam metallic restorative materials are even denser than enamel. A radiograph is a two-dimensional representation of a three-dimensional situation. The orientation of anatomical structures relative to the X-ray beam is a major factor determining their appearance on the film. For example, a beam travelling through the long axis of a radiodense structure will produce a whiter image on the film than one passing through its shorter axis because more X-rays are absorbed; the structure will also have a different shape.


1966 ◽  
Vol 21 (10) ◽  
pp. 960-966 ◽  
Author(s):  
Yasuhiko Takamori ◽  
Ernst-Randolf Lochmann ◽  
Wolfgang Laskowski

The amount of DNA and RNA per dry weight as well as the rate of RNA synthesis was determined in a series of almost isogenic and homozygous Saccharomyces strains of different ploidy which had irradiated with different doses of X-rays.It was found that the RNA content per dry weight showed only a small decrease after irradiation even with high doses. The decrease in the DNA content after irradiation is larger, and it is already maximal at the smallest X-ray dose tested (75 krad) . No further decrease could be observed even after application of 225 krad.The RNA synthesis is much more radioresistant in all strains tested (haploid-hexaploid) than the colony forming ability. X-ray doses which reduce the colony forming ability of the cells to less than 1% lead to a reduction of the RNA synthesis of only about 50 per cent. The inactivation of RNA synthesis increases with increasing irradiation doses and increasing incubation time after irradiation.There was only a small difference in the radiosensitivity of the synthesis of soluble or ribosomal RNA.Genetic effects on the radiation inactivation of the colony forming ability, previously described as “aα-effect” and “AS-effect”, show no influence on the radiosensitivity of cellular nucleic acid content and synthesis.


1963 ◽  
Vol 7 ◽  
pp. 1-13 ◽  
Author(s):  
Volkmar Gerold ◽  
Heinz Auer ◽  
Winfried Merz

AbstractThe formation of the spherical Guinier—Preston zones in an aluminum-silver alloy is governed by a metastable miscibility gap, which consists of two different sections. The lower section occurs below 170°C (η state), the higher section up to 420°C (∊ state). The zones in the two sections differ in their silver concentration and in their atomic order. To prove the change in order, a combination of X-ray small-angle scattering and electric resistivity measurements was used. As the resistivity depends on the zone size and the atomic order, the change in order can be found when the zone size is known. This size was measured by the X-ray technique. To complete the results, X-rays ingle-crystal diffraction patterns with monochromatic radiation were taken at different stages. According to these patterns, three different states must be distinguished.The η′ state exists at room temperature after quenching from 550°C. The silver atoms prefer a layered arrangement in the zones, which is not very stable. It is destroyed after short annealings above 100°C. The η state is developed during annealing below 170°C. A three-dimensional atomic order is built up with increasing zone size, which results in a marked decrease in the resistivity. For the ∊ state (above 170°C), a nearly random atomic distribution exists. Step-quenching experiments prove that the ordered η state can also be developed at room temperature.


1998 ◽  
Vol 4 (S2) ◽  
pp. 376-377
Author(s):  
P. Cloetens ◽  
J. Baruchel ◽  
J.P. Guigay ◽  
W. Ludwig ◽  
L. Mancini ◽  
...  

X-ray imaging started over a century ago. For several decades its only form was absorption radiography, in which contrast is due to local variations in beam attenuation. About forty years ago, a new form of X-ray imagery, Bragg-diffraction imaging or X-ray topography, developed into practical use. It directly reveals crystal defects in the bulk of large single crystals, and paved the way to microelectronics by leading to the growth of large, practically perfect, crystals. The advent of third-generation synchrotron radiation sources of X-rays such as ESRF and APS is now making possible, through the coherence of the X-ray beams, a novel form of radiography, in which contrast arises from phase variations across the transmitted beam, associated with optical path length differences, through Fresnel diffraction. Phase radiography and its three-dimensional companion, X-ray phase tomography, are providing new information on the mechanics of composites as well as on biological materials.


Sign in / Sign up

Export Citation Format

Share Document