Color Correction and Repair of Haze Images Under Hue-saturation-intensity Color Space and Machine Learning

Author(s):  
HAIBIN SUN ◽  
haiwei liu

Abstract To improve the visual effect and quality of haze images after fog removal, a model for color correction and repair of haze images under hue-saturation-intensity (HSI) color space combined with machine learning is proposed. First, the haze image imaging model is constructed according to the atmospheric scattering theory. Second, based on HSI color space, the color enhancement and fog removal of the haze image model is proposed, and a haze image-transmittancegallery is constructed. Third, the visual dictionary of the transmittance graph is obtained by training the k-means clustering algorithm based on density parameter optimization and support vector machine algorithm based on genetic algorithm optimization. Fourth, based on the visual dictionary and the atmospheric scattering model, the haze image is repaired and defogged, and the subjective visual effects and objective evaluation indexes of color enhancement and fog removal of haze images are compared. It is concluded that the algorithm can effectively guarantee the detail and clarity of the image after defogging.

2013 ◽  
Vol 18 (2) ◽  
pp. 140-148 ◽  
Author(s):  
Taeha Um ◽  
Wonha Kim

Author(s):  
Akira Taguchi

There are many color systems. Some systems are correspond to the human visual system, such as the Munsell color system. Other systems are formulated to ease data processing in machines, such as RGB color space. At first, Munsell color system is introduced in this paper. Next, RGB color system and hue-saturation-intensity (HSI) color system which is derived from RGB color systems are reviewed. HSI color system is important, because HSI color system is closely related to Munsell color system. We introduce the advantage and drawbacks of the conventional HSI color space. Furthermore, the improved HSI color system is introduced. The second half of this paper, we introduce a lot of color image enhancement methods based on the histogram equalization or the differential histogram equalization. Since hue preserving is necessary for color image processing, intensity processing methods by using both intensity and saturation in HSI color space are reviewed. Finally, hue preserving color image enhancement methods in RGB color system are explained.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248769
Author(s):  
Kento Koyama ◽  
Marin Tanaka ◽  
Byeong-Hyo Cho ◽  
Yusaku Yoshikawa ◽  
Shige Koseki

The visual perception of freshness is an important factor considered by consumers in the purchase of fruits and vegetables. However, panel testing when evaluating food products is time consuming and expensive. Herein, the ability of an image processing-based, nondestructive technique to classify spinach freshness was evaluated. Images of spinach leaves were taken using a smartphone camera after different storage periods. Twelve sensory panels ranked spinach freshness into one of four levels using these images. The rounded value of the average from all twelve panel evaluations was set as the true label. The spinach image was removed from the background, and then converted into a gray scale and CIE-Lab color space (L*a*b*) and Hue, Saturation and Value (HSV). The mean value, minimum value, and standard deviation of each component of color in spinach leaf were extracted as color features. Local features were extracted using the bag-of-words of key points from Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features). The feature combinations selected from the spinach images were used to train machine learning models to recognize freshness levels. Correlation analysis between the extracted features and the sensory evaluation score showed a positive correlation (0.5 < r < 0.6) for four color features, and a negative correlation (‒0.6 < r < ‒0.5) for six clusters in the local features. The support vector machine classifier and artificial neural network algorithm successfully classified spinach samples with overall accuracy 70% in four-class, 77% in three-class and 84% in two-class, which was similar to that of the individual panel evaluations. Our findings indicate that a model using support vector machine classifiers and artificial neural networks has the potential to replace freshness evaluations currently performed by non-trained panels.


2019 ◽  
Vol 12 (9) ◽  
pp. 4713-4724
Author(s):  
Chaojun Shi ◽  
Yatong Zhou ◽  
Bo Qiu ◽  
Jingfei He ◽  
Mu Ding ◽  
...  

Abstract. Cloud segmentation plays a very important role in astronomical observatory site selection. At present, few researchers segment cloud in nocturnal all-sky imager (ASI) images. This paper proposes a new automatic cloud segmentation algorithm that utilizes the advantages of deep-learning fully convolutional networks (FCNs) to segment cloud pixels from diurnal and nocturnal ASI images; it is called the enhancement fully convolutional network (EFCN). Firstly, all the ASI images in the data set from the Key Laboratory of Optical Astronomy at the National Astronomical Observatories of Chinese Academy of Sciences (CAS) are converted from the red–green–blue (RGB) color space to hue saturation intensity (HSI) color space. Secondly, the I channel of the HSI color space is enhanced by histogram equalization. Thirdly, all the ASI images are converted from the HSI color space to RGB color space. Then after 100 000 iterative trainings based on the ASI images in the training set, the optimum associated parameters of the EFCN-8s model are obtained. Finally, we use the trained EFCN-8s to segment the cloud pixels of the ASI image in the test set. In the experiments our proposed EFCN-8s was compared with four other algorithms (OTSU, FCN-8s, EFCN-32s, and EFCN-16s) using four evaluation metrics. Experiments show that the EFCN-8s is much more accurate in cloud segmentation for diurnal and nocturnal ASI images than the other four algorithms.


2019 ◽  
Author(s):  
Wilson Castro ◽  
Jimy Oblitas ◽  
Miguel De-la-Torre ◽  
Carlos Cotrina ◽  
Karen Bazán ◽  
...  

The classification of fresh fruits according to their ripeness is typically a subjective and tedious task; consequently, there is growing interest in the use of non-contact techniques such as those based on computer vision and machine learning. In this paper, we propose the use of non-intrusive techniques for the classification of Cape gooseberry fruits. The proposal is based on the use of machine learning techniques combined with different color spaces. Given the success of techniques such as artificial neural networks,support vector machines, decision trees, and K-nearest neighbors in addressing classification problems, we decided to use these approaches in this research work. A sample of 926 Cape gooseberry fruits was obtained, and fruits were classified manually according to their level of ripeness into seven different classes. Images of each fruit were acquired in the RGB format through a system developed for this purpose. These images were preprocessed, filtered and segmented until the fruits were identified. For each piece of fruit, the median color parameter values in the RGB space were obtained, and these results were subsequently transformed into the HSV and L*a*b* color spaces. The values of each piece of fruit in the three color spaces and their corresponding degrees of ripeness were arranged for use in the creation, testing, and comparison of the developed classification models. The classification of gooseberry fruits by ripening level was found to be sensitive to both the color space used and the classification technique, e.g., the models based on decision trees are the most accurate, and the models based on the L*a*b* color space obtain the best mean accuracy. However, the model that best classifies the cape gooseberry fruits based on ripeness level is that resulting from the combination of the SVM technique and the RGB color space.


2020 ◽  
Vol 32 (2) ◽  
pp. 67-92 ◽  
Author(s):  
Muhammad Sharif ◽  
Muhammad Attique ◽  
Muhammad Zeeshan Tahir ◽  
Mussarat Yasmim ◽  
Tanzila Saba ◽  
...  

Gait is a vital biometric process for human identification in the domain of machine learning. In this article, a new method is implemented for human gait recognition based on accurate segmentation and multi-level features extraction. Four major steps are performed including: a) enhancement of motion region in frame by the implementation of linear transformation with HSI color space; b) Region of Interest (ROI) detection based on parallel implementation of optical flow and background subtraction; c) shape and geometric features extraction and parallel fusion; d) Multi-class support vector machine (MSVM) utilization for recognition. The presented approach reduces error rate and increases the CCR. Extensive experiments are done on three data sets namely CASIA-A, CASIA-B and CASIA-C which present different variations in clothing and carrying conditions. The proposed method achieved maximum recognition results of 98.6% on CASIA-A, 93.5% on CASIA-B and 97.3% on CASIA-C, respectively.


2021 ◽  
Vol 13 (14) ◽  
pp. 2678
Author(s):  
Haixiao Ge ◽  
Fei Ma ◽  
Zhenwang Li ◽  
Zhengzheng Tan ◽  
Changwen Du

Accurate and timely detection of phenology at plot scale in rice breeding trails is crucial for understanding the heterogeneity of varieties and guiding field management. Traditionally, remote sensing studies of phenology detection have heavily relied on the time-series vegetation index (VI) data. However, the methodology based on time-series VI data was often limited by the temporal resolution. In this study, three types of ensemble models including hard voting (majority voting), soft voting (weighted majority voting) and model stacking, were proposed to identify the principal phenological stages of rice based on unmanned aerial vehicle (UAV) RGB imagery. These ensemble models combined RGB-VIs, color space (e.g., RGB and HSV) and textures derived from UAV-RGB imagery, and five machine learning algorithms (random forest; k-nearest neighbors; Gaussian naïve Bayes; support vector machine and logistic regression) as base models to estimate phenological stages in rice breeding. The phenological estimation models were trained on the dataset of late-maturity cultivars and tested independently on the dataset of early-medium-maturity cultivars. The results indicated that all ensemble models outperform individual machine learning models in all datasets. The soft voting strategy provided the best performance for identifying phenology with the overall accuracy of 90% and 93%, and the mean F1-scores of 0.79 and 0.81, respectively, in calibration and validation datasets, which meant that the overall accuracy and mean F1-scores improved by 5% and 7%, respectively, in comparison with those of the best individual model (GNB), tested in this study. Therefore, the ensemble models demonstrated great potential in improving the accuracy of phenology detection in rice breeding.


Author(s):  
Wilson Castro ◽  
Jimy Oblitas ◽  
Miguel De-la-Torre ◽  
Carlos Cotrina ◽  
Karen Bazán ◽  
...  

The classification of fresh fruits according to their ripeness is typically a subjective and tedious task; consequently, there is growing interest in the use of non-contact techniques such as those based on computer vision and machine learning. In this paper, we propose the use of non-intrusive techniques for the classification of Cape gooseberry fruits. The proposal is based on the use of machine learning techniques combined with different color spaces. Given the success of techniques such as artificial neural networks,support vector machines, decision trees, and K-nearest neighbors in addressing classification problems, we decided to use these approaches in this research work. A sample of 926 Cape gooseberry fruits was obtained, and fruits were classified manually according to their level of ripeness into seven different classes. Images of each fruit were acquired in the RGB format through a system developed for this purpose. These images were preprocessed, filtered and segmented until the fruits were identified. For each piece of fruit, the median color parameter values in the RGB space were obtained, and these results were subsequently transformed into the HSV and L*a*b* color spaces. The values of each piece of fruit in the three color spaces and their corresponding degrees of ripeness were arranged for use in the creation, testing, and comparison of the developed classification models. The classification of gooseberry fruits by ripening level was found to be sensitive to both the color space used and the classification technique, e.g., the models based on decision trees are the most accurate, and the models based on the L*a*b* color space obtain the best mean accuracy. However, the model that best classifies the cape gooseberry fruits based on ripeness level is that resulting from the combination of the SVM technique and the RGB color space.


2017 ◽  
Vol 9 (1) ◽  
pp. 56
Author(s):  
Wanvy Arifha Saputra ◽  
Agus Zainal Arifin

The image of the tuna before entering process classification, it must have a good segmentation results. The result of good segmentation is object and background separate clearly. The image of tuna which has a distribution of light that is uneven and has a complex texture will produce an error segmentation. One method of image segmentation was seeded region growing and parameters that used only two, namely seed and threshold. This research proposed method seeded region growing in the HSI color space for image segmentation of tuna. The Color space of RGB (red green blue) on image of tuna transformed into a color space HSI (hue saturation intensity) then only the hue color space used as segmentation by using seeded region growing. Determination of seed and threshold parameters can do manually and the result of the segmentation do refinement with mathematical morphology. The experiment using 30 image of tuna to segmentation and evaluation methods using RAE (relative foreground area error), MAE (missclassification error) and the MHD (modified Hausdroff distance). The image of the tuna successfully performed segmentation evidenced by a value RAE, ME and MHD respectively are 5,40%, 1,53% dan 0,41%.


Sign in / Sign up

Export Citation Format

Share Document