scholarly journals TSP, a virulent Podovirus can control the growth of Staphylococcus aureus till 12 hours

Author(s):  
Rabia Tabassum ◽  
Iqbal Ahmed Alvi ◽  
Muhammad Asif ◽  
Abdul Basit ◽  
Shafiq ur Rehman

Abstract Methicillin-resistant Staphylococcus aureus (MRSA) is a prevailing nosocomial pathogen that causes a large number of diseases in healthcare and community settings. The MRSA causes infections in different tissues of immunocompromised individuals leading to increased morbidity and mortality. It possess various virulence mechanisms to show resistance against to a lot of beta-lactam antibiotics. To tackle this emerging issue of MRSA, there is an urgent need of antibiotic alternatives and utilizing lytic bacteriophages is one of the best promising therapeutic approach. In the present study, a lytic bacteriophage TSP was isolated from hospital wastewater against MRSA. Its morphology, physiology, host specificity, burst size and lytic spectrum were determined and complete genome sequence was analyzed. TSP phage efficiently inhibit bacterial growth for up to 12 hours. TSP phage showed broad lytic spectrum against clinical isolates of MRSA (78%) and MSSA (37%). It showed stability at varying temperatures (25ºC, 37ºC) and pH (5–9), while its maximum storage stability was observed at 4ºC. It had short latent period (20min) and high burst size (103 PFU/ infected cell). TSP genome sequence and restriction analysis revealed that its genome is linear having 17,987 bp in length with an average GC content of 29.7%. The TSP genome showed 98% similarity to S aureus phages SCH1, SCH11 and vB SauP-436A1. According to comparative genomic analysis and phylogenetic tree analysis, TSP phage can be considered as a member of genus “P68viruses”. The strong lytic activity, broad host range and short latent period along with absence of any lysogenic and toxic genes make TSP a very good candidate for phage therapy against MRSA infections if prove safe during in vivo studies.

2020 ◽  
Vol 9 (30) ◽  
Author(s):  
Roshan D’Souza ◽  
Andrey A. Filippov ◽  
Kirill V. Sergueev ◽  
Yunxiu He ◽  
Amanda M. Ward ◽  
...  

ABSTRACT A potentially therapeutic Twort-like myophage, Esa1, with specificity toward Staphylococcus aureus was isolated from lake water. We report the complete genome sequence of ESa1, assembled using both MinION and Illumina MiSeq reads, consisting of 153,106 bp, with 30.3% GC content, 253 protein coding sequences, 4 tRNAs, and 10,437-bp direct terminal repeats.


2019 ◽  
Vol 7 (10) ◽  
pp. 471 ◽  
Author(s):  
Natalia Łubowska ◽  
Bartłomiej Grygorcewicz ◽  
Katarzyna Kosznik-Kwaśnicka ◽  
Agata Zauszkiewicz-Pawlak ◽  
Alicja Węgrzyn ◽  
...  

The development of antimicrobial resistance has become a global concern. One approach to overcome the problem of drug resistance is the application of bacteriophages. This study aimed at characterizing three phages isolated from sewage, which show lytic activity against clinical isolates of multidrug-resistant Staphylococcus aureus. Morphology, genetics and biological properties, including host range, adsorption rate, latent time, phage burst size and lysis profiles, were studied in all three phages. As analyzed by transmission electron microscopy (TEM), phages vB_SauM-A, vB_SauM-C, vB_SauM-D have a myovirion morphology. One of the tested phages, vB_SauM-A, has relatively rapid adsorption (86% in 17.5 min), short latent period (25 min) and extremely large burst size (~500 plaque-forming units (PFU) per infected cell). The genomic analysis revealed that vB_SauM-A, vB_SauM-C, vB_SauM-D possess large genomes (vB_SauM-A 139,031 bp, vB_SauM-C 140,086 bp, vB_SauM-D 139,088 bp) with low G+C content (~30.4%) and are very closely related to the phage K (95–97% similarity). The isolated bacteriophages demonstrate broad host range against MDR S. aureus strains, high lytic activity corresponding to strictly virulent life cycle, suggesting their potential to treat S. aureus infections.


1971 ◽  
Vol 17 (5) ◽  
pp. 677-682 ◽  
Author(s):  
R. A. Kelln ◽  
R. A. J. Warren

The lytic bacteriophage ø-S1 was isolated from sewage using a strain of Pseudomonas fluorescens as host. It had a hexagonal head 60 nm in diameter and a short tail 30 nm long. ø-S1 had a broad host range, lysing strains from 10 biotypes of Pseudomonads. Although the latent period was fairly constant for the bacterial strains tested, the burst size varied considerably. The rate of adsorption of the phage to different strains also varied considerably.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fang Cao ◽  
Xitao Wang ◽  
Linhui Wang ◽  
Zhen Li ◽  
Jian Che ◽  
...  

Multidrug-resistantKlebsiella pneumoniae(MRKP) has steadily grown beyond antibiotic control. However, a bacteriophage is considered to be a potential antibiotic alternative for treating bacterial infections. In this study, a lytic bacteriophage, phage 1513, was isolated using a clinical MRKP isolate KP 1513 as the host and was characterized. It produced a clear plaque with a halo and was classified as Siphoviridae. It had a short latent period of 30 min, a burst size of 264 and could inhibit KP 1513 growthin vitrowith a dose-dependent pattern. Intranasal administration of a single dose of 2 × 109 PFU/mouse 2 h after KP 1513 inoculation was able to protect mice against lethal pneumonia. In a sublethal pneumonia model, phage-treated mice exhibited a lower level ofK. pneumoniaeburden in the lungs as compared to the untreated control. These mice lost less body weight and exhibited lower levels of inflammatory cytokines in their lungs. Lung lesion conditions were obviously improved by phage therapy. Therefore, phage 1513 has a great effectin vitroandin vivo, which has potential to be used as an alternative to an antibiotic treatment of pneumonia that is caused by the multidrug-resistantK. pneumoniae.


2012 ◽  
Vol 78 (7) ◽  
pp. 2264-2271 ◽  
Author(s):  
Allan L. Delisle ◽  
Ming Guo ◽  
Natalia I. Chalmers ◽  
Gerard J. Barcak ◽  
Geneviève M. Rousseau ◽  
...  

ABSTRACTM102AD is the new designation for aStreptococcus mutansphage described in 1993 as phage M102. This change was necessitated by the genome analysis of anotherS. mutansphage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed thatS. mutansphage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains ofS. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3′-overhangcossite that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship betweenS. mutansphages M102AD and M102 as well as withStreptococcus thermophilusphages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 174
Author(s):  
Xianghui Li ◽  
Tongxin Hu ◽  
Jiacun Wei ◽  
Yuhua He ◽  
Abualgasim Elgaili Abdalla ◽  
...  

Staphylococcus aureus phage Henu2 was isolated from a sewage sample collected in Kaifeng, China, in 2017. In this study, Henu2, a linear double-stranded DNA virus, was sequenced and found to be 43,513 bp long with 35% G + C content and 63 putative open reading frames (ORFs). Phage Henu2 belongs to the family Siphoviridae and possesses an isometric head (63 nm in diameter). The latent time and burst size of Henu2 were approximately 20 min and 7.8 plaque forming unit (PFU)/infected cells. The Henu2 maintained infectivity over a wide range of temperature (10–60 °C) and pH values (4–12). Phylogenetic and comparative genomic analyses indicate that Staphylococcus aureus phage Henu2 should be a new member of the family of Siphoviridae class-II. In this paper, Phage Henu2 alone exhibited weak inhibitory activity on the growth of S. aureus. However, the combination of phage Henu2 and some antibiotics or oxides could effectively inhibit the growth of S. aureus, with a decrease of more than three logs within 24 h in vitro. These results provide useful information that phage Henu2 can be combined with antibiotics to increase the production of phage Henu2 and thus enhance the efficacy of bacterial killing.


2010 ◽  
Vol 9 (2) ◽  
pp. 45 ◽  
Author(s):  
G.A. Al-Mola, and I. H. Al-Yassari

Bacteriophage are viruses that infect bacterial cells. as with all viruses, phage are nonliving agents and thus require the use of the host‟s metabolic processes to replicate itself. in this study, the phage of interest are those that infect and lyses E. colt host cells. when phage are released from the ruptured host, distinct zones of clearing (plaques) form. the original E. colt host cells for this experiment came from a sample of raw sewage. in order to obtain the bacteriophage, a procedure of enrichment, isolation, dilution and seeding was followed, the presence of distinct plaques indicated that lytic bacteriophage had been successfully amplified, separated and grown.This study included determination of phage titre, latent period , rise period and the burst size of the phage and effect some of factor on phage titre such as (temperature, ether and chloroform) .for determination ofhage titre used series of dilutions(10-1, 10-2, 10-3, 10-4, 10-4, 10-6, 10-7, 10-8, 10-9) the dilution factor gave the best countable number of plaques is(103). this dilution factor was then used for all other experiments, the latent period , rise period and the burst size of the phage are determined by countable number of plaques and phage titre(titer: plaque-forming unit(p.f.u) during 10,20,30,40,50, and 60 minutes . it was (4.7x105 „ 5.3x105 and 6.0x105)during 1O,20and30minutes respectively in the latent period ,but it was (8.5x105 8.9x10‟ 9.3x105)during 40,50,and 60 minutes respectively in the rise period .then the burst size of the phage is counted by the ratio of the phage titer after rise period to that during the latent period it was(1.67).This study also included effect of temperature on phage titre the statistical analysis was significantly increase P<0.05 in phage titre at the temperature37 C° comparing with phage titre at the temperature 50 C° and phage titre at the temperature 65 C°. effects of ether and chloroform on number of plaques and phage titre during 5,10,15 ,20,25 ,30,35 and 40 minutes it was(0.7x105 , 0.3x105 , 0 , 0 , 0 , 0, 0 and 0) respectively in ether sensitivity, but the phage titre in chloroform sensitivity was completely inactivated by chloroform treatment, the statistical analysis (freedom degree ( 2,21 ) and F value=52.60 was high] significant increase (P<0.05) in phage titre in normal saline comparing with phage titre in ether and chloroform sensitivity


2020 ◽  
Author(s):  
Mohamed A. Abouelkhair

AbstractBackgroundStaphylococcus aureus is a major bacterial pathogen that causes a variety of diseases, ranging from wound infections to severe bacteremia or food poisoning. The course and severity of the disease are mainly dependent on the bacterium genotype as well as host factors. Whole-genome sequencing (WGS) is currently the most extensive genotyping method available, followed by bioinformatic sequence analysis.MethodsA total of 253 uncharacterized staphylococcus genome sequences were downloaded from the National Center for Biotechnology Information (NCBI) (August 2012 to March 2020) from different studies. Samples were clustered based on core and accessory pairwise distances between isolates and then analyzed by multilocus sequence typing tool (MLST). Staphylococcal Cassette Chromosome mec (SCCmec), spa typing, variant calling, core genome alignment, and recombination sites prediction were performed on detected S. aureus isolates. S. aureus isolates were also analyzed for the presence of genes coding for virulence factors and antibiotic resistance.Results and conclusionUncategorized genome sequences were clustered into 24 groups. About 182 uncharacterized Staphylococcus genomes were identified at the species level based on MLST, including 32 S. lugdunensis genome sequence, thus doubling the number of the publicly accessible S. lugdunensis genome sequence in Genbank. MLST identified another four species (S. epidermidis (33/253), S. lugdunensis (32/253), S. haemolyticus (41/253), S. hominis (24/253) and S. aureus (52/253)). Among the 52 S. aureus isolates, 21 (40.38%) isolates carried mecA gene, with 57.14% classified as SCCmec IV. The results of this study provide knowledge that facilitates evolutionary studies of staphylococcal species and other bacteria at the genome level.


2020 ◽  
Author(s):  
Lili Zhang ◽  
Huiyan Ding ◽  
Khashayar Shahin ◽  
Abbas Soleimani-Delfan ◽  
Heye Wang ◽  
...  

Abstract Background: Staphylococcus aureus is a biofilm-producing organism that is frequently isolated from various environments worldwide. Because of the natural resistance of S. aureus biofilm to antibiotics, bacteriophages are considered as a promising alternative for its removal. Results: The bacteriophage vB_SauS_JS02 was isolated from livestock wastewater and showed activity against multidrug-resistant (MDR) S. aureus. The phage vB_SauS_JS02 was morphologically classified as Siphoviridae; it had a broad host range (45 out of 81 strains, 55.6%) and high burst size (52 plaque-forming unit (PFU)/infected cell) and could survive in a pH range of 4 to 11 and a temperature range of 40 ºC to 50 ºC. Bioinformatics analysis showed that the phage genome contained a long double-stranded linear DNA genome of 46,435 base pairs with a G+C content of 33.1% and had 66 putative open reading frames (ORFs). The predicted protein products of the ORFs were clustered functionally into five groups as follows: replication/regulation, DNA packaging, structure/morphogenesis, lysis, and lysogeny. The phage vB_SauS_JS02 was a temperate phage with a higher inhibiting and degrading activity against planktonic cells (~86% reduction) and S. aureus biofilm (∼68% reduction in biofilm formation). Moreover, the removal activity of the phage vB_SauS_JS02 against both planktonic cells and S. aureus biofilms was even better than that of the antibiotic (ceftazidime). Conclusion: In summary, the present study introduced the phage vB_SauS_JS02 as a potential biocontrol agent against biofilm-producing S. aureus.


Sign in / Sign up

Export Citation Format

Share Document