Induction Suspension of Conductive Microring and Its Gyroscopic Stabilization

Author(s):  
Dmitrii Skubov ◽  
Ivan Popov ◽  
Pavel Udalov

Abstract The main task of our work is determination of possible levitation of micro-ring with eddy current in magnetic field of down ring with set alternating current and determination of critical value of «ohmic» damping separated field of parameters, at which motions of suspension ring transit from divergent to meeting to steady-state equilibrium position. I. e. in this critical case the motion practically coincides with motions of conservative system. The possibility of gyroscopic stabilization of suspension ring taking into account initial set rotation is considered. Thereby it can serve as contactless micro-gyroscope.

1982 ◽  
Vol 27 (3) ◽  
pp. 427-435 ◽  
Author(s):  
M. G. Haines ◽  
F. Marsh

A magnetically confined two-fluid plasma is considered in which the Ohmic heating of the electrons by a current driven parallel to an applied magnetic field is balanced by bremsstrahlung and equipartition to the ions. It is found that for a steady state the applied electric field must be below a critical value which in absence of bremsstrahlung is given by where the electrical conductivity is and the total pressure is p. Under this condition it is found that there are two /Futions for Te/Ti which satisfy the steady electron energy balance equation in a homogeneous, fully ionized plasma. One of these /Futions always has values above the critical value of Te/Ti (= 132 in absence of bremsstrahlung) for the onset of the electrothermal instability in a fully ionized gas. Inclusion of electron thermal conduction transverse to the magnetic field (with Hall parameter ) yields a wavelength for maximum growth of the instability of about , where ae is the electron Larmor radius. The steady non linear profiles showing current filamentation have been calculated. Runaway electrons and ion-acoustic instabilities can occur in the spatial maximum of the current density and electron temperature. Inclusion of bremsstrahlung loss reduces the value of Te/Ti for the onset of the instability, and at Te = Ti yields a maximum ion temperature obtainable by Ohmic heating in a stable plasma.


2013 ◽  
Vol 588 ◽  
pp. 64-73 ◽  
Author(s):  
Leszek Dziczkowski ◽  
Sławomir Zolkiewski

In the defectoscopic tests by means of the eddy currents method only a certain superficial layer of the tested element is inspected. The reason of this phenomenon is connected with a very important feature of the eddy currents. The induced eddy currents generate its own magnetic field which obstructs penetration for the primary magnetic field. It is crucial to know the penetration depth of eddy currents. It allows planning successfully the diagnosis process. There are two cases worth mentioning: when the eddy current method is treated as the additional method complementary to the ultrasound method (because it does not detect superficial defects) and when the eddy current method is used as the main method for the thin elements diagnosis. The most frequently used evaluation method of eddy currents penetration depth is connected with determination of the e-folding decrease of electric current. The definition is convenient to use because it is simplified by using in the mathematical formula (allowing determination of the depth) frequency of eddy current and conductivity of the diagnosed elements. However the simplifications are not sufficient in practice. When we change the frequency of eddy currents during the survey or the probe then the depth of penetration is also changed, then we can measure the depth of the defects. While measuring the conductivity of a proper material element it is obligatory to prepare an adequate size of the sample that is free of defects. Knowing the value of penetration depth is then very helpful. On the other hand, when we have a sample of a specified size and we want to measure its conductivity then the knowledge of the depth of penetration of eddy currents helps us to select the proper frequency. In the paper there is described a proposal of a different definition of the penetration depth of eddy current, much more useful and accurate according to the authors. To obtain much more precise results, the new eddy current method was proposed. This method takes into account not only the parameters of the diagnosed sample and the eddy current frequency but the characteristic of the measuring device as well. The above mentioned method is based on the universal mathematical model of impact of conductive thin foil on the measuring coil impedance change. The procedure of calculations is easy to carry out online.


Author(s):  
Beata Szuflitowska ◽  
Marcin Ziolkowski ◽  
Krzysztof Stawicki

Magnetic Induction Tomography (MIT) belongs to the noncontact electromagnetic imaging techniques. This paper focuses on determination of a secondary magnetic field map calculated with the help of the Biot-Savart law around the low-conductivity object. The inclusions of various shapes and different electrical conductivities values and two measurement planes are considered. In each case the objects’ single maximal cell volume with assumed uniform eddy current density has been determined. In order to keep the relative error below 1% the object should be divided in most cases into elements with maximal cell volume equal to 0.244 mm3 for yz − plane, and 0.03 mm3 for xy − plane.


Clean Air ◽  
2007 ◽  
Vol 8 (4) ◽  
pp. 359-371
Author(s):  
A. Medeiros ◽  
R. Edenhofer ◽  
K. Lucka ◽  
H. Kohne

Author(s):  
Peter M. Fischer ◽  
Patrik Klingborg ◽  
Fanny Kärfve ◽  
Fredrika Kärfve ◽  
C. Hagberg ◽  
...  

Determination of the complete occupational sequence of the site, including investigation of pre-12th century levels which were thoroughly studied by P. Åström since the 1970s, is the main task of the planned project. During the course of the expedition (NSCE11) in spring 2010 a ground-penetrating radar survey (GPR) was carried out at Dromolaxia Vizatzia/Hala Sultan Tekke in Area 6, leading to the discovery of a large Late Cypriote complex. The compound is bordered to the north by a substantial wall, against which nine rooms (so far) could be exposed. Two occupational phases have been verified but there are indications of a third. The suggested functions of the various structures of the most recent phase are: living, working, storage and administration spaces. The rich find contexts point to the production of textiles and metal objects, and the locally produced pottery is generally of a high quality. There are also many imports, mainly from the Mycenaean sphere of culture. The locally produced vessels from Phase 2 include the “Creature krater” which is a masterpiece of a high artistic standard. Another piece of elevated artistry is the piece of a “Warrior vase”.


1989 ◽  
Vol 20 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Gunnar Jacks ◽  
Göran Åberg ◽  
P. Joseph Hamilton

Strontium isotopes in precipitation, soil and runoff water can be used to establish a ratio of wet plus dry deposited Sr to Sr released by weathering. This ratio is especially enhanced in areas with old acid Proterozoic rocks (0.6-2.5 Ga) and Archean rocks (>2.5 Ga). Since Sr and Ca behave in an analogous way in the coniferous forest ecosystem the results for Sr can be used for the determination of Ca. If the deposition of calcium can be calculated reasonably accurately the weathering rate can also be estimated. Five catchments have been investigated using this approach. Three of them seem to be close to a steady state, wherein the losses and gains of calcium to the system are equal. In the two southern-most catchments there seems to be an ongoing loss of exchangeable calcium. The loss by runoff occurs with sulphate being the dominant anion. Weathering rates of 1.5 to 4.8 kg Ca/ha year have been estimated.


1996 ◽  
Vol 27 (4) ◽  
pp. 247-254 ◽  
Author(s):  
Zekâi Şen

A simple, approximate but practical graphical method is proposed for estimating the storage coefficient independently from the transmissivity value, provided that quasi-steady state flow data are available from a pumping test. In the past, quasi-steady state flow distance-drawdown data have been used for the determination of transmissivity only. The method is applicable to confined and leaky aquifers. The application of the method has been performed for various aquifer test data available in the groundwater literature. The results are within the practical limits of approximation compared with the unsteady state flow solutions.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2461-2464 ◽  
Author(s):  
R. D. Tyagi ◽  
Y. G. Du

A steady-statemathematical model of an activated sludgeprocess with a secondary settler was developed. With a limited number of training data samples obtained from the simulation at steady state, a feedforward neural network was established which exhibits an excellent capability for the operational prediction and determination.


Sign in / Sign up

Export Citation Format

Share Document