scholarly journals Comparison between Heat Pipes based condenser and Conventional condenser of Power Plant

Author(s):  
Mallikharjuna Rao Tarla

Abstract This paper explores the feasibility of using heat pipes for steam condensation and heat pipe based condenser. The concept of heat pipes for steam condensation is newly proposed and studied herewith. . CFD analysis and Experimental studies carried on the single heat pipe for steam condensation. Experimental setup and results of heat pipes based steam condenser presented. Properties like Effectiveness, heat transfer surface area, exergy analysis for the conventional condenser made of simple copper tubes and heat pipe based condenser are compared

Author(s):  
S. F. Wang ◽  
Y. X. Hu ◽  
Y. Zhou ◽  
W. Zhang

Self-rewetting fluids (SRWFs) are non-azeotropic solutions enjoy a particular surface tension behavior — an increase in the surface tension with increasing temperature. Due to the unique property, the SRWF can spontaneously wet hotter region and enhance heat transfer. The interesting behavior makes the SRWF become the research hotspot in phase change heat transfer research field. To clarify the heat transfer characteristics of SRWF, a series of boiling experiments have been carried out by employing dilute heptanol aqueous solution as SRWF. It is found out that, the bubble size of the SRWF is much smaller than that of pure water, and the critical heat flux of SRWF is much higher than that of water, which is beneficial for application in heat pipes. To find out the heat transfer performance of SRWF in heat pipes, experimental studies are performed on oscillating heat pipe (OHP) consisting of 4 meandering turns, with heat transfer length (L) of 150 mm and inner diameter (Di) of 1.3 mm. Compared with the water, the SRWF exhibits much better thermal performance, which indicates that SRWF is a promising and useful working liquid for the application in high efficient cooling devices with micro structure.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


1968 ◽  
Vol 90 (4) ◽  
pp. 547-552 ◽  
Author(s):  
E. K. Levy

A one-dimensional analysis of a compressible vapor flowing within the evaporator section of a heat pipe is presented. Comparisons between the theoretical results and existing heat pipe data show that the presence of gasdynamic choking can limit the heat transfer capacity of a heat pipe operating at sufficiently low vapor pressures.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012088
Author(s):  
A. A. Litvintceva ◽  
N. I. Volkov ◽  
N. I. Vorogushina ◽  
V. A. Moskovskikh ◽  
V. V. Cheverda

Abstract Heat pipes are a good solution for temperature stabilization, for example, of microelectronics, because these kinds of systems are without any moving parts. Experimental research of the effect of operating parameters on the heat transfer in a cylindrical heat pipe has been conducted. The effect of the working fluid properties and the porous layer thickness on the heat flux and temperature difference in the heat pipe has been investigated. The temperature field of the heat pipe has been investigated using the IR-camera and K-type thermocouples. The data obtained by IR-camera and K-type thermocouples have been compared. It is demonstrated the power transferred from the evaporator to the condenser is a linear function of the temperature difference between them.


Author(s):  
Alberto Mucci ◽  
Foster Kwame Kholi ◽  
Man Yeong Ha ◽  
Jason Chetwynd-Chatwin ◽  
June Kee Min

Abstract The Pulsating Heat Pipe (PHP) is a promising device in the family of heat pipes. With no need for a wick, they exhibit a high heat transfer to weight ratio. Moreover, the wickless design removes limits commonly associated with conventional heat pipes, increasing the maximum power transfer per single heat pipe. These peculiarities make it an ideal candidate for many high power applications. Nonetheless, there is though only partial knowledge on the driving mechanism, which restricts prediction accuracy. Most Pulsating Heat Pipe studies rely on experiments to test configurations, while simulations usually depend on semi-empirical correlations or adaptations of reduced theoretical models. Experiments provide detailed data for a particular geometry in lab fixed conditions, but it offers limited flexibility to test alternative configurations. Semi-empirical models use previous experimental data to create non-dimensional formulations. Though approaching an increased set of conditions, correlations apply with reasonable accuracy only to a small range, outside of which the prediction ability progressively falls. High order numerical analysis such as Computational Fluid Dynamics (CFD) modeling could potentially provide full visualization, but due to the complex flow behavior, previous studies used this method only in simple configurations with a small number of turns. The present research will expand the potential of this modeling technique by presenting the CFD analysis of a complex Pulsating Heat Pipe configuration. The importance of this study lies in the fact that this configuration, with a number of turns greater than a critical parameter, shows a reduced sensitivity to gravity and is therefore particularly important for applications where restrictions on installations make the positioning sub-optimal. The research simulates using a CFD commercial software a two-dimensional Pulsating Heat Pipe with sixteen turns. The heat pipe, with a 2 mm internal diameter, is filled with water at 50% of mass. To visualize the oscillation pattern of liquid and vapor slugs and plugs inside the Pulsating Heat Pipe, the model performs a transient analysis on the device. A Volume of Fluid (VOF) solver for multiphase analysis, coupled with the Lee model for evaporation and condensation mass transfer, calculates the interactions between the liquid and the gas phase inside the tube. The study follows the geometric and operational conditions from previous experiments. The analysis regards a Pulsating Heat Pipe operating in a vertical position with the condenser section placed in the upper sector. During the initial operations, the system flow distribution fluctuates between different flow modes as the fluid slugs and plugs structure forms. After stabilizing the heat transfer results well agree with the tested values. Moreover, the increased resolution allows us to fully visualize the internal operation, retrieving additional information on the temperature and ratio of liquid and gas phase along the heat pipe.


2020 ◽  
Vol 21 (3) ◽  
pp. 309
Author(s):  
Maryam Fallah Abbasi ◽  
Hossein Shokouhmand ◽  
Morteza Khayat

Electronic industries have always been trying to improve the efficiency of electronic devices with small dimensions through thermal management of this equipment, thus increasing the use of small thermal sinks. In this study micro heat pipes with triangular and square cross sections have been manufactured and tested. One of the main objectives is to obtain an understanding of micro heat pipes and their role in energy transmission with electrical double layer (EDL). Micro heat pipes are highly efficient heat transfer devices, which use the continuous evaporation/condensation of a suitable working fluid for two-phase heat transport in a closed system. Since the latent heat of vaporization is very large, heat pipes transport heat at small temperature difference, with high rates. Because of variety of advantage features these devices have found a number of applications both in space and terrestrial technologies. The theory of operation micro heat pipes with EDL is described and the micro heat pipe has been studied. The temperature distribution have achieved through five thermocouples installed on the body. Water and different solution mixture of water and ethanol have used to investigate effect of the electric double layer heat transfer. It was noticed that the electric double layer of ionized fluid has caused reduction of heat transfer.


2015 ◽  
Vol 733 ◽  
pp. 599-602
Author(s):  
Lei Cao ◽  
Guo Chang Zhao ◽  
Li Ping Song ◽  
Tian Dong Lu

Flat grooved heat pipes, which are especially useful in obtaining a high degree of temperature uniformity on flat surfaces, have been successfully used in the temperature control of electronic systems, however, the mechanisms governing the flow and heat transfer of this kind of heat pipes are still under scrutiny as some reported results cannot be reproduced by others or some assumptions have been proven to be unreasonable or ideal. The theoretical and experimental studies on flat grooved heat pipes and introduce work performed on modeling flat grooved heat pipes are reviewed in this paper.


2012 ◽  
Vol 499 ◽  
pp. 21-26 ◽  
Author(s):  
Xi Bing Li ◽  
Z.M. Shi ◽  
S.G. Wang ◽  
Q.M. Hu ◽  
L. Bao ◽  
...  

For great progress in heat pipe technology, a micro heat pipe has become an ideal heat dissipating device in high heat-flux electronic products, and capillary limit is the main factor affecting its heat transfer performance. Based on analyses of capillary limit and currently commonly-used groove structures, this paper built capillary limit models for micro heat pipes with dovetail-groove, rectangular-groove, trapezoidal-groove and V-groove wick structures respectively for theoretical analyses. The analysis results show that better heat transfer performances can be obtained in micro heat pipes with small-angle dovetail (i.e. a sector structure), rectangular and small-angle trapezoidal grooved wick structures when groove depth is 0.2-0.3mm and top-width-to-depth ratio is 1.2-1.5.


Author(s):  
C. B. Sobhan ◽  
G. P. (Bud) Peterson

The fluid flow and heat transfer characteristics of micro heat pipes are analyzed theoretically, in order to understand the physical phenomena and quantify the influence of various parameters on overall thermal performance of these devices. A one-dimensional model is utilized to solve the governing equations for the liquid/vapor flow and the heat transfer in the heat pipe channel. Variations in the liquid and vapor cross-sectional areas along the axial length of the heat pipe are included and the equations are solved using an implicit finite difference scheme. Appropriate models for fluid friction in small passages with varying cross-sectional areas have been incorporated to yield the axial distribution of the meniscus radius of curvature and the velocity, temperature and pressure in both the liquid and the vapor phases. Using this information, the effective thermal conductivity of the micro heat pipe is modeled, and parametric studies are performed by changing the heat load and cooling rate. The results of the analysis are discussed and compared with other theoretical models and experimental results found in the literature. By so doing, this analysis provides greater insight into the physical phenomena of flow and heat transfer in micro heat pipes and identifies a methodology for optimizing the design of these devices.


Sign in / Sign up

Export Citation Format

Share Document