scholarly journals Cool-Dry Season Depression in Gas Exchange of Canopy Leaves and Water Flux of Tropical Trees at the Northern Limit of Asian Tropics

Author(s):  
Zafar Siddiq ◽  
Yong-Jiang Zhang

Abstract Trees on the northern boundary of Asian tropics experience hot-humid and cool-dry seasons, but little is known about their seasonal dynamics in canopy physiology. We used a canopy crane to reach the canopy of nine tropical tree species and measured canopy leaf gas exchange, water status, and trunk sap flux during the hot-humid and cool-dry seasons in Xishuangbanna, China. We found that most tree species exhibited significant reductions in maximum photosynthetic rate (Amax), stomatal conductance (gsmax), predawn and midday leaf water-potentials, and maximum sap flux density in the cool-dry season. Compared to the hot-humid season, Amax declined by 19 % − 60 %, and maximum water flux declined by -14% (an increase) to 42 %. The cool-dry season decline in Amax of four species can be partly explained by an increased stomatal limitation (decreased gsmax and intercellular CO2 concentrations). Therefore, a predicted increase in drought in this region may decrease the carbon sequestration and productivity of these forests. We did not find a tradeoff between performance (Amax in the hot-humid season) and persistence through the cool-dry season; species with higher Amax in the hot-humid season did not show higher percent seasonal declines in the cool-dry season. Amax was significantly and positively associated with the trunk spa flux for both seasons but the association was weak in the cool-dry season. Thus, our results suggest that some tradeoffs and trait associations are environment-dependent. Our results are important to understand carbon and water fluxes of seasonal tropical forests and their responses to environmental changes.

2004 ◽  
Vol 16 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Carlos Henrique Britto de Assis Prado ◽  
Zhang Wenhui ◽  
Manuel Humberto Cardoza Rojas ◽  
Gustavo Maia Souza

Predawn leaf water potential (psipd) and morning values of leaf gas exchange, as net photosynthesis (A), stomatal conductance (gs), transpiration (E), and morning leaf water potential (psimn) were determined seasonally in 22 woody cerrado species growing under natural conditions. Despite the lower mean values of psipd in the dry season (-0.35 ± 0.23 MPa) compared to the wet season (-0.08 ± 0.03 MPa), the lowest psipd in the dry season (-0.90 ± 0.00 MPa) still showed a good nocturnal leaf water status recovery for all species studied through out the year. Mean gs values dropped 78 % in the dry season, when the vapor pressure of the air was 80% greater than in the wet season. This reduction in gs led to an average reduction of 33% in both A and E, enabling the maintainance of water use efficiency (WUE) during the dry season. Network connectance analysis detected a change in the relationship between leaf gas exchange and psimn in the dry season, mainly between gs-E and E-WUE. A slight global connectance value increase (7.25 %) suggested there was no severe water stress during the dry season. Multivariate analysis showed no link between seasonal response and species deciduousness, suggesting similar behavior in remaining leaves for most of the studied species concerning leaf gas exchange and psimn under natural drought.


2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


2018 ◽  
Vol 45 (8) ◽  
pp. 865 ◽  
Author(s):  
Amanda P. De Souza ◽  
Adriana Grandis ◽  
Bruna C. Arenque-Musa ◽  
Marcos S. Buckeridge

Photosynthesis and growth are dependent on environmental conditions and plant developmental stages. However, it is still not clear how the environment and development influence the diurnal dynamics of nonstructural carbohydrates production and how they affect growth. This is particularly the case of C4 plants such as sugarcane (Saccharum spp.). Aiming to understand the dynamics of leaf gas exchange and nonstructural carbohydrates accumulation in different organs during diurnal cycles across the developmental stages, we evaluated these parameters in sugarcane plants in a 12-month field experiment. Our results show that during the first 3 months of development, light and vapour pressure deficit (VPD) were the primary drivers of photosynthesis, stomatal conductance and growth. After 6 months, in addition to light and VPD, drought, carbohydrate accumulation and the mechanisms possibly associated with water status maintenance were also likely to play a role in gas exchange and growth regulation. Carbohydrates vary throughout the day in all organs until Month 9, consistent with their use for growth during the night. At 12 months, sucrose is accumulated in all organs and starch had accumulated in leaves without any diurnal variation. Understanding of how photosynthesis and the dynamics of carbohydrates are controlled might lead to strategies that could increase sugarcane’s biomass production.


2005 ◽  
Vol 48 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Marcelo Schramm Mielke ◽  
Alex-Alan Furtado de Almeida ◽  
Fábio Pinto Gomes

Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD) levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D) on the saturated photosynthetic rate (Amax). All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.


2011 ◽  
Vol 38 (5) ◽  
pp. 372 ◽  
Author(s):  
Gregorio Egea ◽  
Ian C. Dodd ◽  
María M. González-Real ◽  
Rafael Domingo ◽  
Alain Baille

To determine whether partial rootzone drying (PRD) optimised leaf gas exchange and soil–plant water relations in almond (Prunus dulcis (Mill.) D.A. Webb) compared with regulated deficit irrigation (RDI), a 2 year trial was conducted on field-grown trees in a semiarid climate. Five irrigation treatments were established: full irrigation (FI) where the trees were irrigated at 100% of the standard crop evapotranspiration (ETc); three PRD treatments (PRD70, PRD50 and PRD30) that applied 70, 50 and 30% ETc, respectively; and a commercially practiced RDI treatment that applied 50% ETc during the kernel-filling stage and 100% ETc during the remainder of the growth season. Measurements of volumetric soil moisture content in the soil profile (0–100 cm), predawn leaf water potential (Ψpd), midday stem water potential (Ψms), midday leaf gas exchange and trunk diameter fluctuations (TDF) were made during two growing seasons. The diurnal patterns of leaf gas exchange and stem water potential (Ψs) were appraised during the kernel-filling stage in all irrigation regimes. When tree water relations were assessed at solar noon, PRD did not show differences in either leaf gas exchange or tree water status compared with RDI. At similar average soil moisture status (adjudged by similar Ψpd), PRD50 trees had higher water status than RDI trees in the afternoon, as confirmed by Ψs and TDF. Although irrigation placement showed no effects on diurnal stomatal regulation, diurnal leaf net photosynthesis (Al) was substantially less limited in PRD50 than in RDI trees, indicating that PRD improved leaf-level water use efficiency.


1996 ◽  
Vol 36 (7) ◽  
pp. 861 ◽  
Author(s):  
H Schaper ◽  
EK Chacko ◽  
SJ Blaikie

Gas exchange, leaf water status, soil water use and nut yield of cashew trees were monitored during the reproductive phase in 2 consecutive years (1988 and 1989). Treatment 1 comprised continuous irrigation from the end of the wet season in April until harvest in October; T2, irrigation between flowering (mid June) and harvest; and T3, no irrigation. Irrigation was applied by under-tree sprinkler at 43 mm/week in 1988 and 64 mm/week in 1989. Measurement of leaf gas exchange, chlorophyll content and nut production showed that trees in T2 were as productive as those in T1 (>1.3 kg kernel/tree). In T3, water deficit caused a 4-fold reduction in leaf photosynthesis and reduced leaf chlorophyll content from about 600 to 400 mg/m2 during fruit development. There was no effect on the number of hermaphrodite flowers produced (both ranging from 0 to 15 hermaphrodite flowers/panicle) but the water deficit was associated with a lower kernel yield (1.16 kg kernel/tree). Commercial yields (kg kernel/tree) in irrigated treatments were 20% greater than in the non-irrigated treatment and the kernels from irrigated trees were of a higher grade (kernel recovery >32% in T1 and T2 compared with 27.4% in T3). These results suggest that irrigation of established cashew plantations in the tropical regions of northern Australia can be restricted to the period between flowering and harvest without reducing yield.


2018 ◽  
Vol 38 (8) ◽  
pp. 1152-1165 ◽  
Author(s):  
Laura Fernández-de-Uña ◽  
Ismael Aranda ◽  
Sergio Rossi ◽  
Patrick Fonti ◽  
Isabel Cañellas ◽  
...  

2016 ◽  
Vol 40 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Maria da Assunção Machado Rocha ◽  
Claudivan Feitosa de Lacerda ◽  
Marlos Alves Bezerra ◽  
Francisca Edineide Lima Barbosa ◽  
Hernandes de Oliveira Feitosa ◽  
...  

ABSTRACT The low availability of water in the soil is one of the limiting factors for the growth and survival of plants. The objective of this study was to evaluate the responses of physiological processes in early growth of guanandi (Calophyllum brasilense Cambess), African mahogany (Khayai vorensis A. Chev) and oiti (Licaniato mentosa Benth Fritsch) over a period of water stress and other of rehydration in the soil with and without addition of organic matter. The study was conducted in a greenhouse and the experimental design was completely randomised into a 3 x 2 x 2 factorial scheme, comprising three species (guanandi, African mahogany, and oiti), two water regimes (with and without water restriction) and two levels of organic fertilisation (with and without the addition of organic matter). Irrigation was suspended for 15 days in half of the plants, while the other half (control) continued to receive daily irrigation, the soil being maintained near field capacity for these plants. At the end of the stress period, the plants were again irrigated for 15 days to determine their recovery. Water restriction reduced leaf water potential and gas exchange in the three species under study, more severely in soil with no addition of organic matter. The addition of this input increased soil water retention and availability to the plants during the suspension of irrigation, reducing the detrimental effects of the stress. During the period of rehydration, there was strong recovery of water status and leaf gas exchange. However recovery was not complete, suggesting that some of the effects caused by stress irreversibly affected cell structures and functions. However, of the species being studied, African mahogany displayed a greater sensitivity to stress, with poorer recovery.


Sign in / Sign up

Export Citation Format

Share Document