scholarly journals Application of Weighted Gene Co-expression Network Analysis to Identify Key Modules and Hub Genes in Systemic Juvenile Idiopathic Arthritis

Author(s):  
Mi Zhou ◽  
Ruru Guo ◽  
Yongfei Wang ◽  
Wanling Yang ◽  
Rongxiu Li ◽  
...  

Abstract Background: Systemic juvenile idiopathic arthritis (sJIA) is a severe autoinflammatory disorder whose molecular mechanism is still not clearly defined. To better understand the disease using scattered datasets from public domains, we performed a weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes underlying sJIA pathogenesis.Methods: Two gene expression datasets, GSE7753 and GSE13501, were used to construct WGCNA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to the entirety of genes and the hub genes in the sJIA modules. Cytoscape was used to screen and visualize the hub genes. We further compared the hub genes with the GWAS genes and used a consensus WGCNA analysis to prove that our conclusions are conservative and reproducible across multiple independent data sets. Results: A total of 5414 genes were obtained for WGCNA, from which highly correlated genes were divided into 17 modules. The red module demonstrated the highest correlation with the sJIA module (r =0.8, p=3e−29), while the green-yellow module was found to be closely related to the non-sJIA module (r =0.62, p=1e−14). Functional enrichment analysis demonstrated that the red module was largely enriched in activation of immune responses, infection, nucleosome and erythrocyte, the green-yellow module was mostly enriched in immune responses and inflammation. Additionally, the hub genes in the red module were highly enriched in erythrocyte differentiation, including ALAS2, AHSP, TRIM10, TRIM58 and KLF1. The hub genes from the green-yellow module were mainly associated with immune responses, exemplified by genes such as KLRB1, KLRF1, CD160, KIRs etc.Conclusion: We identified sJIA-related modules and several hub genes that might be associated with the development of sJIA. The two modules may help understand the mechanisms of sJIA and the hub genes may become biomarkers and therapeutic targets of sJIA in the future.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mi Zhou ◽  
Ruru Guo ◽  
Yong-Fei Wang ◽  
Wanling Yang ◽  
Rongxiu Li ◽  
...  

Systemic juvenile idiopathic arthritis (sJIA) is a severe autoinflammatory disorder with a still not clearly defined molecular mechanism. To better understand the disease, we used scattered datasets from public domains and performed a weighted gene coexpression network analysis (WGCNA) to identify key modules and hub genes underlying sJIA pathogenesis. Two gene expression datasets, GSE7753 and GSE13501, were used to construct the WGCNA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to the genes and hub genes in the sJIA modules. Cytoscape was used to screen and visualize the hub genes. We further compared the hub genes with the genome-wide association study (GWAS) genes and used a consensus WGCNA to verify that our conclusions were conservative and reproducible across multiple independent datasets. A total of 5,414 genes were obtained for WGCNA, from which highly correlated genes were divided into 17 modules. The red module demonstrated the highest correlation with the sJIA module ( r = 0.8 , p = 3 e − 29 ), whereas the green-yellow module was found to be closely related to the non-sJIA module ( r = 0.62 , p = 1 e − 14 ). Functional enrichment analysis demonstrated that the red module was mostly enriched in the activation of immune responses, infection, nucleosomes, and erythrocytes, and the green-yellow module was mostly enriched in immune responses and inflammation. Additionally, the hub genes in the red module were highly enriched in erythrocyte differentiation, including ALAS2, AHSP, TRIM10, TRIM58, and KLF1. The hub genes from the green-yellow module were mainly associated with immune responses, as exemplified by the genes KLRB1, KLRF1, CD160, and KIRs. We identified sJIA-related modules and several hub genes that might be associated with the development of sJIA. Particularly, the modules may help understand the mechanisms of sJIA, and the hub genes may become biomarkers and therapeutic targets of sJIA in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Xu ◽  
Jian Xu ◽  
Zhiqiang Wang ◽  
Yuequan Jiang

Objective. Esophageal cancer (ESCA) is one of the most aggressive malignancies globally with an undesirable five-year survival rate. Here, this study was conducted for determining specific functional genes linked with ESCA initiation and progression. Methods. Gene expression profiling of ESCA was curated from TCGA (containing 160 ESCA and 11 nontumor specimens) and GSE38129 (30 paired ESCA and nontumor tissues) datasets. Differential expression analysis was conducted between ESCA and nontumor tissues with adjusted p value <0.05 and |log2fold-change|>1. Weighted gene coexpression network analysis (WGCNA) was conducted for determining the ESCA-specific coexpression modules and genes. Thereafter, ESCA-specific differentially expressed genes (DEGs) were intersected. Functional enrichment analysis was then presented with clusterProfiler package. Protein-protein interaction was conducted, and hub genes were determined. Association of hub genes with pathological staging was evaluated, and survival analysis was presented among ESCA patients. Results. This study determined 91 ESCA-specific DEGs following intersection of DEGs and ESCA-specific genes in TCGA and GSE38129 datasets. They were remarkably linked to cell cycle progression and carcinogenic pathways like the p53 signaling pathway, cellular senescence, and apoptosis. Ten ESCA-specific hub genes were determined, containing ASPM, BUB1B, CCNA2, CDC20, CDK1, DLGAP5, KIF11, KIF20 A, TOP2A, and TPX2. They were prominently associated with pathological staging. Among them, KIF11 upregulation was in relation to undesirable prognosis of ESCA patients. Conclusion. Collectively, we determined ESCA-specific coexpression modules and hub genes, which offered the foundation for future research concerning the mechanistic basis of ESCA.


2020 ◽  
Author(s):  
XU LIU ◽  
Li Yao ◽  
Jingkun Qu ◽  
Lin Liu ◽  
XU LIU ◽  
...  

Abstract Background Gastric cancer is a rather heterogeneous type of malignant tumor. Among the several classification system, Lauren classification can reflect biological and pathological differences of different gastric cancer.Method to provide systematic biological perspectives, we employ weighted gene co-expression network analysis to reveal transcriptomic characteristics of gastric cancer. GSE15459 and TCGA STAD dataset were downloaded. Co-expressional network was constructed and gene modules were identified. Result Two key modules blue and red were suggested to be associated with diffuse gastric cancer. Functional enrichment analysis of genes from the two modules was performed. Validating in TCGA STAD dataset, we propose 10 genes TNS1, PGM5, CPXM2, LIMS2, AOC3, CRYAB, ANGPTL1, BOC and TOP2A to be hub-genes for diffuse gastric cancer. Finally these ten genes were associated with gastric cancer survival. Conclusion More attention need to be paid and further experimental study is required to elucidate the role of these genes.


Author(s):  
Yi Ren ◽  
Hannah Labinsky ◽  
Andriko Palmowski ◽  
Henrik Bäcker ◽  
Michael Müller ◽  
...  

Systemic juvenile idiopathic arthritis (SJIA) is a severe childhood-onset inflammatory disease characterized by arthritis accompanied by systemic auto-inflammation and extra-articular symptoms. While recent advances have unraveled a range of risk factors, the pathomechanisms involved in SJIA and potential prognostic markers for treatment success remain partly unknown. In this study, we included 70 active SJIA and 55 healthy control patients from the National Center for Biotechnology Information to analyze for differentially expressed genes (DEGs) using R. Functional enrichment analysis, protein-protein interaction (PPI), and gene module construction were performed for DEGs and hub gene set. We additionally examined immune system cell composition with CIBERSORT and predicted prognostic markers and potential treatment drugs for SJIA. In total, 94 upregulated and 24 downregulated DEGs were identified. Two specific modules of interest and eight hub genes (ARG1, DEFA4, HP, MMP8, MMP9, MPO, OLFM4, PGLYRP1) were screened out. Functional enrichment analysis suggested that complex neutrophil-related functions play a decisive role in the disease pathogenesis. CIBERSORT indicated neutrophils, M0 macrophages, CD8+ T cells, and naïve B cells to be relevant drivers of disease progression. Additionally, we identified TPM2 and GZMB as potential prognostic markers for treatment response to canakinumab. Moreover, sulindac sulfide, (-)-catechin, and phenanthridinone were identified as promising treatment agents. This study provides a new insight into molecular and cellular pathogenesis of active SJIA and highlights potential targets for further research.


2019 ◽  
Author(s):  
Junhong Li ◽  
Yang Zhai ◽  
Peng Wu ◽  
Yueqiang Hu ◽  
Wei Chen ◽  
...  

Abstract Background Microarray-based gene expression profiling has been widely used in biomedical research. Weighted gene co-expression network analysis (WGCNA) can link microarray data directly to clinical traits and to identify rules for predicting pathological stage and prognosis of disease, it has been found useful in many biological processes. Stroke is one of the most common diseases worldwide, yet molecular mechanisms of its pathogenesis are largely unknown. We aimed to construct gene co-expression networks to identify key modules and hub genes associated with the pathogenesis of stroke.Results In this study, we screened out the differentially expressed genes from gene microarray expression profiles, then constructed the free-scale gene co-expression networks to explore the associations between gene sets and clinical features, and to identify key modules and hub genes. Subsequently, functional enrichment and the receiver operating characteristic (ROC) curve analysis were performed. And the results show that a total of 11,747 most variant genes were used for co-expression network construction. Pink and yellow modules were found to be the most significantly related to stroke. Functional enrichment analysis showed that the pink module was mainly involved in regulation of neuron regeneration, and the repair of DNA damage, while the yellow module was mainly enriched in ion transport system dysfunction which were correlated with neuron death. A total of 8 hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) were identified and validated at transcriptional levels (other datasets) and by existing literatures.Conclusions Eight hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of stroke in the future.


2020 ◽  
Author(s):  
Wenxing Su ◽  
Biao Huang ◽  
Wei Han ◽  
Lu An ◽  
Yi Guan ◽  
...  

Abstract Background: Cutaneous squamous cell carcinoma (cSCC) is the leading cause of death in patients with non-melanoma skin cancers (NMSC). However, unclear pathogenesis of cSCC limits the application of molecular targeted therapy. Results: To identify the hub genes in the pathogenesis and progression of cSCC, we downloaded the microarray data sets GSE2503, GSE45164 and GSE66359 from the Gene Expression Omnibus (GEO) database, and identified differentially expressed genes (DEGs) between tumor and non-tumor tissues. Functional enrichment analysis was performed using DAVID. The STRING online website was used to construct a protein-protein interaction network (PPI), and then Cytoscape performed module analysis and degree calculation. 146 DEGs were identified with significant differences, including 113 up-regulated genes and 33 down-regulated genes. The enriched functions and pathways of the DEGs include microtubule-based movement, ATP binding, cell cycle, p53 signaling pathway, oocyte meiosis and PLK1 signaling events. Nine hub genes were identified, namely CDK1, AURKA, RRM2, CENPE, CCNB1, KIAA0101, ZWINT, TOP2A, ASPM. The differential expression of these genes has been verified in other data sets. In addition, the ROC curve also confirmed their ability to predict disease. Conclusion: By integrated bioinformatic analysis, the DEGs and hub genes identified in this study elucidated the molecular mechanism of the pathogenesis and progression of cSCC, and are expected to become future biomarkers or therapeutic targets.


2021 ◽  
Author(s):  
Jun Jiang ◽  
Delong Chen ◽  
Siyuan Xie ◽  
Qichao Dong ◽  
Yi Yu ◽  
...  

Abstract BackgroundHypertrophic cardiomyopathy (HCM) is a heterogeneously inherited cardiac disorder with unclear biological pathogenesis. This study aims to identify the key modules and genes involved in the development of HCM.MethodsUsing weighted gene co-expression network analysis (WGCNA) algorithm, we constructed integrative co-expression networks for the two large sample HCM datasets separately. After selecting clinically significant modules with the same clinical trait, functional enrichment analysis was performed to detect their common pathways. Based on the intramodular connectivity (IC), the shared hub genes were generated, validated, and further explored in gene set enrichment analysis (GSEA).ResultsThe orange and pink modules in GSE141910, the green and brown modules in GSE36961 were mostly related to HCM. Functional enrichment analysis suggested that HCM might exhibit enhanced processes including remodeling of extracellular matrix, activation of abnormal protein signaling, aggregation of calcium ion, and organization of cytoskeleton. SMOC2, COL16A1, RASL11B, TUBA3D, IL18R1 were defined as real hub genes due to their top IC values, significantly different expression levels, and excellent diagnostic performance in both datasets. Moreover, GSEA analysis demonstrated that pathways of the five hub genes were mainly involved in neuroactive ligand-receptor interaction, ECM-receptor interaction, Hedgehog signaling pathway.ConclusionOur study provides more comprehensive insights into the molecular mechanisms of HCM, identifies five hub genes as candidate biomarkers for HCM, which might be theoretically feasible for targeted therapy against HCM.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiamei Liu ◽  
Shengye Liu ◽  
Xianghong Yang

BackgroundDespite advances in the understanding of neoplasm, patients with cervical cancer still have a poor prognosis. Identifying prognostic markers of cervical cancer may enable early detection of recurrence and more effective treatment.MethodsGene expression profiling data were acquired from the Gene Expression Omnibus database. After data normalization, genes with large variation were screened out. Next, we built co-expression modules by using weighted gene co-expression network analysis to investigate the relationship between the modules and clinical traits related to cervical cancer progression. Functional enrichment analysis was also applied on these co-expressed genes. We integrated the genes into a human protein-protein interaction (PPI) network to expand seed genes and build a co-expression network. For further analysis of the dataset, the Cancer Genome Atlas (TCGA) database was used to identify seed genes and their correlation to cervical cancer prognosis. Verification was further conducted by qPCR and the Human Protein Atlas (HPA) database to measure the expression of hub genes.ResultsUsing WGCNA, we identified 25 co-expression modules from 10,016 genes in 128 human cervical cancer samples. After functional enrichment analysis, the magenta, brown, and darkred modules were selected as the three most correlated modules for cancer progression. Additionally, seed genes in the three modules were combined with a PPI network to identify 31 tumor-specific genes. Hierarchical clustering and Gepia results indicated that the expression quantity of hub genes NDC80, TIPIN, MCM3, MCM6, POLA1, and PRC1 may determine the prognosis of cervical cancer. Finally, TIPIN and POLA1 were further filtered by a LASSO model. In addition, their expression was identified by immunohistochemistry in HPA database as well as a biological experiment.ConclusionOur research provides a co-expression network of gene modules and identifies TIPIN and POLA1 as stable potential prognostic biomarkers for cervical cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Nianwu Wang ◽  
Wei Wang ◽  
Wenli Mao ◽  
Nazuke Kuerbantayi ◽  
Nuan Jia ◽  
...  

Background. The majority of lung cancers are adenocarcinomas, with the proportion being 40%. The patients are mostly diagnosed in the middle and late stages with metastasis and easy recurrence, which poses great challenge to the treatment and prognosis. Platinum-based chemotherapy is a primary treatment for adenocarcinoma, which frequently causes drug resistance. As a result, it is important to uncover the mechanisms of the chemoresponse of adenocarcinoma to platinum-based chemotherapy. Methods. The genes from the dataset GSE7880 were gathered into gene modules with the assistance of weighted gene coexpression network analysis (WGCNA), the gene trait significance absolute value (|GS|), and gene module memberships (MM). The genes from hub gene modules were calculated with a protein-protein interaction (PPI) network analysis in order to obtain a screening map of hub genes. The hub genes with both a high |GS| and MM and a high degree were selected. Furthermore, genes in the hub gene modules also went through a Gene Ontology (GO) functional enrichment analysis. Results. 11 hub genes in four hub gene modules (LY86, ACTR2, CDK2, CKAP4, KPNB1, RBBP4, SMAD4, MYL6, RPS27, TSPAN2, and VAMP2) were chosen as the significant hub genes. Through the GO function enrichment analysis, it was indicated that four modules were abundant in immune system functions (floralwhite), amino acid biosynthetic process (lightpink4), cell chemotaxis (navajowhite2), and targeting protein (paleturquoise). Four hub genes with the highest |GS| were verified by prognostic analysis.


2020 ◽  
Author(s):  
Zeyi Zhang ◽  
Ou Chen ◽  
Jingjing Wang

Abstract BackgroundSevere asthma is a heterogeneous inflammatory disease. The rise of precise immunotherapy for severe asthmatics underlines more understanding of molecular mechanisms and biomarkers. In this study, we aim to identify underlying mechanisms and hub genes that define asthma severity.MethodsDifferentially expressed genes were screened out based on bronchial epithelial brushings from mild and severe asthmatics. Then, the weighted gene co-expression network analysis was adopted to identify gene networks and the most significant module associated with asthma severity. Meanwhile, hub genes screening and functional enrichment analysis was performed. Receiver operating characteristic was conducted to validate the hub genes.ResultsWeighted gene co-expression network analysis identified 6 modules associated with asthma severity. Three modules were positively correlated (P < 0.001) with asthma severity, containing genes upregulated in severe asthmatics. Functional enrichment analysis found genes in the highlighted module mainly enriched in neutrophil degranulation and activation, leukocyte migration and chemotaxis. Hub genes identified in the module were CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK. Combining these hub genes possessed a moderate ability for discriminating between severe asthmatics and mild-moderate asthmatics with an area under the curve of 0.75.ConclusionOur results identified biomarkers and potential pathogenesis of severe asthma, which provides sight into treatment targets and prognostic markers.


Sign in / Sign up

Export Citation Format

Share Document