Vitamin D Supplementation and Body Composition Changes in Collegiate Basketball Players A 12-Week Randomized Control Trial

Author(s):  
Tamara Hew-Butler ◽  
Carrie Aprik ◽  
Brigid Byrd ◽  
Jordan Sauborin ◽  
Matthew VanSumeren ◽  
...  

Abstract BackgroundVitamin D promotes bone and muscle growth in non-athletes, suggesting supplementation may be ergogenic in athletes. Our primary aim was to determine if modest Vitamin D supplementation augments favorable body composition changes (increased bone and lean mass, decreased fat mass) and performance in collegiate basketball players following 12-weeks of standardized training. MethodsMembers of a men’s and women’s NCAA D1 Basketball team were recruited. Volunteers were randomized to receive either a weekly 4000IU Vitamin D3 supplement (D3) or placebo (P) over 12-weeks of standardized pre-season strength training. Pre- and Post-measurements included: 1) serum 25-hydroxy vitamin D (25-OH-D); 2) body composition variables (total body lean, fat and bone mass) using a dual energy x-ray absorptiometry (DXA) scan; and 3) vertical jump test to assess peak power output. Dietary intake was assessed using Food Frequency questionnaires. Main outcome measures included changes (∆: post- minus pre-intervention) in serum 25-OH-vitamin, body composition, and performance.ResultsEighteen of 23 players completed the trial (8 females/10 males). Eight received the placebo (20±1years; 3 females) while ten received Vitamin D3 (20±2years; 5 females). Weekly Vitamin D3 supplementation induced non-significant increases (∆) in serum 25-OH-vitamin D (2.6±7.2 vs. -3.5±5.3ng/mL;p=0.06), total body bone mineral content (BMC) (73.1±62.5 vs. 84.1±46.5g;p=0.68), and total body lean mass (2803.9±1655.4 vs. 4474.5±11389.8g; p=0.03), plus a non-significant change in body fat (-0.5±0.8 vs. -1.1±1.2%; p=0.19) (Vitamin D3 vs. placebo supplementation groups, respectively). Pre 25-OH-D correlated with both Δ total fat mass (g) (r=0.65;p=0.003) and Δ total body fat% (r=0.56;p=0.02). No differences noted in peak power output ∆ between the D3 vs. P group(-127.4±335.4 vs. 50.9±9W;NS). Participants in the D3 group ingested significantly fewer total calories (-526.2±583.9 vs. -10.0±400kcals;p=0.02) and sodium (-991.4±986.1 vs. 174.1±573.6mg;p=0.02) than participants in the P group.ConclusionsModest (~517IU/day) vitamin D3 supplementation did not enhance favorable changes in total body composition or performance, over 3-months of training, in collegiate basketball players. We alternatively exposed the potential role of sodium on bone metabolism. More practically speaking, weight training provides a robust training stimulus for bone and lean mass accrual, which likely predominates over isolated supplement use with adequate dietary intakes.Trial registration: ISRCTN, ISRCTN14155111. Registered 3 November 2020 - Retrospectively registered, http://www.isrctn.com/ISRCTN14155111

2021 ◽  
pp. 194173812110193
Author(s):  
Emilija Stojanović ◽  
Dragan Radovanović ◽  
Tamara Hew-Butler ◽  
Dušan Hamar ◽  
Vladimir Jakovljević

Context: Despite growing interest in quantifying and correcting vitamin D inadequacy in basketball players, a critical synthesis of these data is yet to be performed to overcome the low generalizability of findings from individual studies. Objective: To provide a comprehensive analysis of data in basketball pertaining to (1) the prevalence of vitamin D inadequacy; (2) the effects of vitamin D supplementation on 25-hydroxyvitamin D [25(OH)D] concentration (and its association with body composition), bone health, and performance; and (3) crucial aspects that warrant further investigation. Data Sources: PubMed, MEDLINE, ERIC, Google Scholar, SCIndex, and ScienceDirect databases were searched. Study Selection: After screening, 15 studies were included in the systematic review and meta-analysis. Study Design: Systematic review and meta-analysis. Level of Evidence: Level 3. Data Extraction: The prevalence of vitamin D inadequacy, serum 25(OH)D, body composition, stress fractures, and physical performance were extracted. Results: The pooled prevalence of vitamin D inadequacy for 527 basketball players in 14 studies was 77% ( P < 0.001; 95% CI, 0.70-0.84). Supplementation with 4000 IU/d and 4000 IU/wk (absolute mean difference [AMD]: 25.39 nmol/L; P < 0.001; 95% CI, 13.44-37.33), as well as 10,000 IU/d (AMD: 100.01; P < 0.001; 95% CI, 70.39-129.63) vitamin D restored 25(OH)D to normal concentrations. Body composition data revealed inverse correlations between changes in serum 25(OH)D (from pre- to postsupplementation) and body fat ( r = −0.80; very large). Data concerning positive impacts of vitamin D supplementation on bone health and physical performance remain sparse. Conclusion: The high proportion of vitamin D inadequacy underscores the need to screen for serum 25(OH)D in basketball players. Although supplementation restored vitamin D sufficiency, the beneficial effects on bone health and physical performance remain sparse. Adiposity can modulate 25(OH)D response to supplementation.


2021 ◽  
pp. 026010602110606
Author(s):  
Tamy Colonetti ◽  
Antônio Jose Grande ◽  
Franciani Rodrigues da Rocha ◽  
Eduardo Ronconi Dondossola ◽  
Lisiane Tuon ◽  
...  

Background: The increase in life expectancy and in the number of individuals over 60 years old brings new demands to health professionals and services based on the physiological changes that occur in this population. The aging process results in changes in body composition, increasing body fat and reducing muscle mass, in addition to a reduction in bone mass. Aim: The aim of this study was to examine the effect of whey protein and vitamin D supplementation on body composition and skeletal muscle in older adults living in long-term care facilities. Methods: This study is a double-blind randomized controlled trial. Thirty older adults (>60 years old) were randomized and allocated in three groups: group receiving resistance training and supplementation receiving resistance training, whey protein and vitamin D; group received resistance and placebo training receiving resistance training and placebo, and control group without any intervention. Body composition was measured by dual-energy X-ray absorptiometry at baseline, 12 weeks, and 24 weeks. Results: The mean age was 74.87 (± 8.14) years. A significant difference ( p = 0.042) was observed between the group receiving resistance training and supplementation and control groups in relation to lean mass increase (kg) at 24 weeks. After 24 weeks of intervention, there was a significant increase in Relative index of muscle mass for the two groups that underwent resistance training, group received resistance and placebo training ( p = 0.042) and group receiving resistance training and supplementation ( p = 0.045), in relation to the control. Conclusion: Combined supplementation of whey protein and vitamin D with resistance training can significantly improve lean mass, total mass, and relative index of muscle mass in institutionalized older adults.


Author(s):  
Luke Hogarth ◽  
Ava Farley ◽  
Max McKenzie ◽  
Brendan Burkett ◽  
Mark McKean

Abstract Background There is limited information on the physique attributes of female netball players from the highest playing standards and the typical body composition changes that occur with training and competition in these athletes. The purpose of this study was to examine the body composition of professional female netball players and changes that occur within and between national premier netball seasons. Methods Dual-energy X-ray absorptiometry (DXA) assessments were conducted in 20 female netball players (age = 26.5 [4.7] years, body mass = 77.3 [9.7] kg, stature = 182.7 [9.5] cm) contracted to a Suncorp Super Netball team. Total body lean mass, fat mass, bone mass and bone mineral density were derived for 127 assessments collected over three seasons. Linear mixed effects modelling was used to examine changes in body composition measures within and between seasons. Results Goal circle players were heavier (12.3 [3.5] kg, p < 0.001, g = 1.51) and taller (15.0 [2.7] cm, p < 0.001, g = 2.30) than midcourt players, and midcourt players had greater lean mass (3.1 [1.6] %, p = 0.07, g = 0.85) and less fat mass (-3.3 [1.7] %, p = 0.06, g = -0.84) than goal circle players when values were normalised to body mass. Players achieved increases in lean mass (2,191 [263] g, p < 0.01, g = 0.45) and decreases in fat mass (-835 [351] g, p = 0.09, g = -0.16) following a preseason preparation period. There were no changes in lean mass (-394 [295] g, p = 0.54, g = 0.07) or fat mass (102 [389] g, p = 0.99, g = 0.04) from the start to the end of the 14-week competition period. Conclusions Professional female netball players achieve small changes in lean mass and fat mass during preseason preparation and maintain their physique over the competitive season. The results of this study can inform practitioners on the training content necessary to promote or maintain desired body composition changes in these athletes.


2013 ◽  
Vol 23 (5) ◽  
pp. 431-440 ◽  
Author(s):  
Regina M. Lewis ◽  
Maja Redzic ◽  
D. Travis Thomas

The purpose of this 6-month randomized, placebo-controlled trial was to determine the effect of season-long (September–March) vitamin D supplementation on changes in vitamin D status, which is measured as 25(OH) D, body composition, inflammation, and frequency of illness and injury. Forty-five male and female athletes were randomized to 4,000 IU vitamin D (n = 23) or placebo (n = 22). Bone turnover markers (NTx and BSAP), 25(OH)D, and inflammatory cytokines (TNF-alpha, IL-6, and IL1-β) were measured at baseline, midpoint, and endpoint. Body composition was assessed by DXA and injury and illness data were collected. All athletes had sufficient 25(OH)D (> 32 ng/ml) at baseline (mean: 57 ng/ml). At midpoint and endpoint, 13% and 16% of the total sample had 25(OH)D < 32 ng/ml, respectively. 25(OH)D was not positively correlated with bone mineral density (BMD) in the total body, proximal dual femur, or lumbar spine. In men, total body (p = .04) and trunk (p = .04) mineral-free lean mass (MFL) were positively correlated with 25(OH)D. In women, right femoral neck BMD (p = .02) was positively correlated with 25(OH)D. 25(OH)D did not correlate with changes in bone turnover markers or inflammatory cytokines. Illness (n = 1) and injury (n = 13) were not related to 25(OH)D; however, 77% of injuries coincided with decreases in 25(OH)D. Our data suggests that 4,000 IU vitamin D supplementation is an inexpensive intervention that effectively increased 25(OH)D, which was positively correlated to bone measures in the proximal dual femur and MFL. Future studies with larger sample sizes and improved supplement compliance are needed to expand our understanding of the effects of vitamin D supplementation in athletes.


Author(s):  
Clíodhna McHugh ◽  
Karen Hind ◽  
Aoife O'Halloran ◽  
Daniel Davey ◽  
Gareth Farrell ◽  
...  

AbstractThe purpose of this study was to investigate longitudinal body mass and body composition changes in one professional rugby union team (n=123), (i) according to position [forwards (n=58) versus backs (n=65)], analysis of players with 6 consecutive seasons of DXA scans (n=21) and, (iii) to examine differences by playing status [academy and international], over 7 years. Players [mean age: 26.8 y, body mass index: 28.9+kg.m2] received DXA scans at fourtime points within each year. A modest (but non-significant) increase in mean total mass (0.8 kg) for professional players was reflected by increased lean mass and reduced body fat mass. At all-time points, forwards had a significantly greater total mass, lean mass and body fat percentage compared to backs (p<0.05). Academy players demonstrated increased total and lean mass and decreased body fat percentage over the first 3 years of senior rugby, although this was not significant. Senior and academy international players had greater lean mass and lower body fat percentage (p<0.05) than non-international counterparts. Despite modest increases in total mass; reflected by increased lean mass and reduced fat mass, no significant changes in body mass or body composition, irrespective of playing position were apparent over 7 years.


2017 ◽  
Vol 10 (2) ◽  
pp. 28
Author(s):  
Ha Cao Thi Thu ◽  
Satoshi Kurose ◽  
Yaeko Fukushima ◽  
Nana Takao ◽  
Natsuko Nakamura ◽  
...  

This study evaluated the impact of exercise training with amino acid and vitamin D supplementation on muscle and bone mass in participants with low muscle volume. Twenty-nine Japanese participants (56-84 years old) were enrolled and assigned into the supplement (n=15) and non-supplement (n=14) groups. All participants underwent a 6-month exercise program. Supplements and nutrition support were provided to the participants in the supplement group for 12 weeks. Body composition and whole bone mineral density (BMD) were measured using dual energy x-ray absorptiometry. The outcomes, including body composition, whole BMD, and skeletal muscle mass index (SMI), were evaluated twice: pre- and post-intervention. The SMI was 6.51(6.28; 7.14) and 5.58 (5.24; 6.05) (kg/m2) in men and women, respectively. The average SMI change was 0.13% (-0.05%; 0.31%) and 2.33% (-0.88%; 5.48%); [mean (lower; upper quartile)]. The average BMD loss in the non-supplement group was -2.78%, and the BMD increased in the supplement group by 4.34%; there was an absolute difference between the two groups (p<0.05). After the intervention, serum myostatin was changed (p=0.001, non-supplement>supplement), serum vitamin D was increased (p=0.03; supplement>non-supplement), and BMD was maintained (p=0.03, supplement>non-supplement). There was a significant difference in the serum myostatin level at baseline and at 6-month in the non-supplement group, with a mean difference of 483.78 ng/ml (p=0.01). There was no significant improvement in the total lean mass, and handgrip strength. Resistance exercise combined with an amino acid supplement affects muscle and bone mass in the short-term intervention.


Author(s):  
Leslie N. Silk ◽  
David A. Greene ◽  
Michael K. Baker

Research examining the preventative effects of calcium and vitamin D supplementation has focused on children and females, leaving the effects on male bone mineral density (BMD) largely unexplored. Thus, the aim of this systematic review and meta-analysis is to examine the efficacy of calcium supplementation, with or without vitamin D for improving BMD in healthy males. Medline, EMBASE, SPORTDiscus, Academic Search Complete, CINHAHL Plus and PubMed databases were searched for studies including healthy males which provided participants calcium supplementation with or without vitamin D and used changes to BMD as the primary outcome measure. Between trial standardized mean differences of percentage change from baseline in BMD of femoral neck, lumbar spine, total body and total hip sites were calculated. Nine studies were included in the systematic review with six references totaling 867 participants contributing to the meta-analysis. Significant pooled effects size (ES) for comparison between supplementation and control groups were found at all sites included in the meta-analysis. The largest effect was found in total body (ES = 0.644; 95% CI = 0.406–0.883; p < .001), followed by total hip (ES = 0.483, 95% CI= 0.255–0.711, p < .001), femoral neck (ES = 0.402, 95% CI = 0.233–0.570, p = .000) and lumbar spine (ES = 0.306, 95% CI = 0.173–0.440, p < .001). Limited evidence appears to support the use of calcium and vitamin D supplementation for improving BMD in older males. There is a need for high quality randomized controlled trials, especially in younger and middle-aged male cohorts and athletic populations to determine whether supplementation provides a preventative benefit.


Sign in / Sign up

Export Citation Format

Share Document