scholarly journals A Pilot Correlation Study of Gut Microbiome between Children with Henoch-Schönlein Purpura and their Mothers

2020 ◽  
Author(s):  
Changying Zhao ◽  
Ying Wang ◽  
Junjie Yang ◽  
Jiaming Zhang ◽  
Xuemei Liu ◽  
...  

Abstract Background: Vertical microbiome transmission from mothers plays an important role inchildren with the establishment and development of gutmicrobiome.Our previous study has found that gut microbiota dysbiosis is associated with Henoch-Schönleinpurpura(HSP) in children,while it is unclear whether there is a correlation between the gut microbiome of the HSP children and their mothers. Methods: In this study, 50HSP child-mother pairs and 61 matched healthy child-mother pairs were enrolled and examined.Stool samples were collected for DNA extraction and 16S rRNA genesequencing, followed by analyses of the gut microbiota composition.Results: Significant differences were observed in the gut microbiome composition between HSP children and healthy children. Several unique biomarkers, such as Enterococcus, Fusobacterium,Veillonellaand Streptococcus were identified. A significant increase of the relative abundance of Prevotella and Megamonas were observed in HSP’s mothers (HSP-M) compared with mothers of the healthy children (H-M). HSP children’s gut microbiome is closely associated with that of their mothers, and the taxon of AcidaminococcusandRoseburiawere onlyfound in the gut microbiome of HSP children and their mothers (HSP-M+C).Conclusions: Our preliminary study revealed that the gut microbiome of HSP children are closely associated with that of their mothers, although children with HSP still possess unique bacterial biomarkers. Dysbiosis of the maternal gut microbiota may play a critical role in increasing the risk of HSP in children, which deserve further longitudinalinvestigations to uncover its mechanisms.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1113
Author(s):  
Eun-Tae Kim ◽  
Sang-Jin Lee ◽  
Tae-Yong Kim ◽  
Hyo-Gun Lee ◽  
Rahman M. Atikur ◽  
...  

Microbiota plays a critical role in the overall growth performance and health status of dairy cows, especially during their early life. Several studies have reported that fecal microbiome of neonatal calves is shifted by various factors such as diarrhea, antibiotic treatment, or environmental changes. Despite the importance of gut microbiome, a lack of knowledge regarding the composition and functions of microbiota impedes the development of new strategies for improving growth performance and disease resistance during the neonatal calf period. In this study, we utilized next-generation sequencing to monitor the time-dependent dynamics of the gut microbiota of dairy calves before weaning (1–8 weeks of age) and further investigated the microbiome changes caused by diarrhea. Metagenomic analysis revealed that continuous changes, including increasing gut microbiome diversity, occurred from 1 to 5 weeks of age. However, the composition and diversity of the fecal microbiome did not change after 6 weeks of age. The most prominent changes in the fecal microbiome composition caused by aging at family level were a decreased abundance of Bacteroidaceae and Enterobacteriaceae and an increased abundance of Prevotellaceae. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis indicated that the abundance of microbial genes associated with various metabolic pathways changed with aging. All calves with diarrhea symptoms showed drastic microbiome changes and about a week later returned to the microbiome of pre-diarrheal stage regardless of age. At phylum level, abundance of Bacteroidetes was decreased (p = 0.09) and that of Proteobacteria increased (p = 0.07) during diarrhea. PICRUSt analysis indicated that microbial metabolism-related genes, such as starch and sucrose metabolism, sphingolipid metabolism, alanine aspartate, and glutamate metabolism were significantly altered in diarrheal calves. Together, these results highlight the important implications of gut microbiota in gut metabolism and health status of neonatal dairy calves.


Author(s):  
Yuanzhen Zhang ◽  
Guizhi Xia ◽  
Xiaojing Nie ◽  
Yugui Zeng ◽  
Yi Chen ◽  
...  

BackgroundGut microbiota plays an important role in the pathogenesis of immune-mediated diseases. However, the complex pathogenesis of Henoch-Schonlein Purpura (HSP) remains elusive. This study aimed to characterize the gut microbiota in HSP patients and explore the potential association between gut microbiota composition and phenotypic changes in HSP.Methods16SrRNA gene sequencing and bioinformatic analyses were performed using total DNA extracted from the fecal microbiota of 34 children with HSP, including 18 primary cases, 16 recurrent cases, and 23 healthy children.ResultsThe diversity indexes showed significant differences in the microbial community among the primary HSP groups, the recurrent HSP group and healthy controls. The abundance of Escherichia-Shigella in the recurrent HSP group was significantly higher than that in the primary HSP group, and the constructed ROC curve had an AUC value of 0.750. According to the Spearman correlation analysis, the abundance of Bacteroides was positively associated with the serum IgG level in children with HSP, while the abundance of Lachnoclostridium was negatively correlated with the complement component 3 (C3). The diversity indexes of gut microbiota in the HSP group with abdominal symptoms were higher than those in the HSP group without GI involvement, and also higher than those in the healthy control group. In the HSP group with GI involvement, the abundance of Faecalibacterium was decreased, while the abundance of Streptococcus and Fusobacteria was increased, compared to the HSP group without GI involvement.ConclusionsThe gut microbiota of children with HSP was different from that of healthy children. The genus Escherichia-Shigella has a diagnostic value for HSP recurrence. Bacteroides and Lachnoclostridium may affect IgG and complement C3 levels in children with HSP. Abdominal symptoms in HSP children were related to gut microbiota (Streptococcus and butyric acid-producing bacteria).


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323020 ◽  
Author(s):  
Yun Kit Yeoh ◽  
Tao Zuo ◽  
Grace Chung-Yan Lui ◽  
Fen Zhang ◽  
Qin Liu ◽  
...  

ObjectiveAlthough COVID-19 is primarily a respiratory illness, there is mounting evidence suggesting that the GI tract is involved in this disease. We investigated whether the gut microbiome is linked to disease severity in patients with COVID-19, and whether perturbations in microbiome composition, if any, resolve with clearance of the SARS-CoV-2 virus.MethodsIn this two-hospital cohort study, we obtained blood, stool and patient records from 100 patients with laboratory-confirmed SARS-CoV-2 infection. Serial stool samples were collected from 27 of the 100 patients up to 30 days after clearance of SARS-CoV-2. Gut microbiome compositions were characterised by shotgun sequencing total DNA extracted from stools. Concentrations of inflammatory cytokines and blood markers were measured from plasma.ResultsGut microbiome composition was significantly altered in patients with COVID-19 compared with non-COVID-19 individuals irrespective of whether patients had received medication (p<0.01). Several gut commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii, Eubacterium rectale and bifidobacteria were underrepresented in patients and remained low in samples collected up to 30 days after disease resolution. Moreover, this perturbed composition exhibited stratification with disease severity concordant with elevated concentrations of inflammatory cytokines and blood markers such as C reactive protein, lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyl transferase.ConclusionAssociations between gut microbiota composition, levels of cytokines and inflammatory markers in patients with COVID-19 suggest that the gut microbiome is involved in the magnitude of COVID-19 severity possibly via modulating host immune responses. Furthermore, the gut microbiota dysbiosis after disease resolution could contribute to persistent symptoms, highlighting a need to understand how gut microorganisms are involved in inflammation and COVID-19.


2020 ◽  
Author(s):  
Matteo Bergamaschi ◽  
Francesco Tiezzi ◽  
Jeremy Howard ◽  
Yi Jian Huang ◽  
Kent A. Gray ◽  
...  

Abstract Background Feed efficiency is a crucial parameter in swine production given both its economic and environmental impact. The gut microbiota plays an essential role in nutrient digestibility and is therefore likely to affect feed efficiency. This study aimed to characterize feed efficiency, production traits, and gut microbiome composition of three major breeds of domesticated swine, and to investigate a possible link between feed efficiency and gut microbiota composition. Results Average daily feed intake ( ADFI ), average daily gain ( ADG ), feed conversion ratio ( FCR ), residual feed intake ( RFI ), backfat, loin depth, and intramuscular fat of 615 pigs belonging to the Duroc ( DR ), Landrace ( LR ), and Large White ( LW ) breeds were measured. Gut microbiota composition was characterized by 16S rRNA gene sequencing. Orthogonal contrasts between paternal line (DR) and maternal lines (LR+LW) and between the two maternal lines (LR versus LW) were performed. Average daily feed intake and ADG were statistically different with DR having lower ADFI and ADG compared to LR and LW. Landrace and LW had a similar ADG and RFI, with higher ADFI and FCR for LW. Alpha diversity was higher in the fecal microbial communities of LR pigs than in those of DR and LW pigs for all time points considered. Duroc communities had significantly higher proportional representation of the Catenibacterium and Clostridium genera compared to LR and LW, while LR pigs had significantly higher proportions of Bacteroides than LW for all time points considered. We identified several amplicon sequencing variants members of certain genera including Anaerovibrio , Bacteroides , Blautia , Clostridium , Dorea , Eubacterium , Faecalibacterium , Lactobacillus, Oscillibacter , and Ruminococcus significantly associated with feed efficiency of pigs for all time points considered. Conclusions In this study we characterized differences in the composition of the fecal microbiota of three commercially relevant breeds of swine, both over time and between breeds. Correlations between different microbiome compositions and feed efficiency were established. This suggests that the microbial community may contribute in shaping host productive parameters. Moreover, our study provides important insights to understand how the intestinal microbial community might influence the host energy harvesting capacity. A deeper understanding of this process may allow us to modulate the gut microbiome for more efficient animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


mSystems ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Ce Yuan ◽  
Michael B. Burns ◽  
Subbaya Subramanian ◽  
Ran Blekhman

ABSTRACT Although variation in gut microbiome composition has been linked with colorectal cancer (CRC), the factors that mediate the interactions between CRC tumors and the microbiome are poorly understood. MicroRNAs (miRNAs) are known to regulate CRC progression and are associated with patient survival outcomes. In addition, recent studies suggested that host miRNAs can also regulate bacterial growth and influence the composition of the gut microbiome. Here, we investigated the association between miRNA expression and microbiome composition in human CRC tumor and normal tissues. We identified 76 miRNAs as differentially expressed (DE) in tissue from CRC tumors and normal tissue, including the known oncogenic miRNAs miR-182, miR-503, and mir-17~92 cluster. These DE miRNAs were correlated with the relative abundances of several bacterial taxa, including Firmicutes , Bacteroidetes , and Proteobacteria . Bacteria correlated with DE miRNAs were enriched with distinct predicted metabolic categories. Additionally, we found that miRNAs that correlated with CRC-associated bacteria are predicted to regulate targets that are relevant for host-microbiome interactions and highlight a possible role for miRNA-driven glycan production in the recruitment of pathogenic microbial taxa. Our work characterized a global relationship between microbial community composition and miRNA expression in human CRC tissues. IMPORTANCE Recent studies have found an association between colorectal cancer (CRC) and the gut microbiota. One potential mechanism by which the microbiota can influence host physiology is through affecting gene expression in host cells. MicroRNAs (miRNAs) are small noncoding RNA molecules that can regulate gene expression and have important roles in cancer development. Here, we investigated the link between the gut microbiota and the expression of miRNA in CRC. We found that dozens of miRNAs are differentially regulated in CRC tumors and adjacent normal colon and that these miRNAs are correlated with the abundance of microbes in the tumor microenvironment. Moreover, we found that microbes that have been previously associated with CRC are correlated with miRNAs that regulate genes related to interactions with microbes. Notably, these miRNAs likely regulate glycan production, which is important for the recruitment of pathogenic microbial taxa to the tumor. This work provides a first systems-level map of the association between microbes and host miRNAs in the context of CRC and provides targets for further experimental validation and potential interventions.


2018 ◽  
Vol 47 (3) ◽  
pp. 164-170 ◽  
Author(s):  
Shoji Tsuji ◽  
Chikushi Suruda ◽  
Masaki Hashiyada ◽  
Takahisa Kimata ◽  
Sohsaku Yamanouchi ◽  
...  

Background: While the etiology of idiopathic nephrotic syndrome (idiopathic nephrotic syndrome [INS]; characterized by repeated relapses and comorbid allergic conditions) remains unknown, recent evidence suggests that dysfunction in regulatory T cells (Tregs) plays an important role in the development of INS as well as allergic diseases. We hypothesized that dysbiosis involving decreased butyric acid-producing gut microbiota leads to defective induction and differentiation of peripherally induced Tregs, resulting in INS relapse. Methods: Study subjects were 12 children with INS, 8 classified as relapsing (R group; median age: 3.0 years) and 4 as non-relapsing (NR group; median age: 4.3 years), and 11 healthy children (HC group; median age: 5.1 years) serving as normal controls. Measurement of microbiota was performed using 16S ribosomal RNA metagenomic analysis, and fecal butyric acid was measured using high performance liquid chromatography. Flow-cytometric analysis of Tregs and CD4-positive (CD4+) cells in peripheral blood was also performed. Results: Metagenomic analysis of gut microbiota using feces showed that the proportion of butyric acid-producing bacteria was significantly lower in R (median 6.36%) than HC (median 18.84%; p = 0.0013), but no different between NR (median 16.71%) and HC (p = 0.29). Fecal organic acid analysis revealed significantly lower butyric acid quantities in R than HC (medians: 0.48 vs. 0.99 mg/g, p = 0.042). Circulating Tregs as a proportion of CD4+ cells were decreased in 75% of R and NR. Conclusion: Pediatric relapsing INS patients show gut microbiota dysbiosis, characterized by a decreased proportion of butyric acid-producing bacteria and lower fecal butyric acid quantities, concomitant with reduced circulatory Tregs.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-324015
Author(s):  
Yating Wan ◽  
Tao Zuo ◽  
Zhilu Xu ◽  
Fen Zhang ◽  
Hui Zhan ◽  
...  

ObjectiveThe gut microbiota has been suggested to play a role in autism spectrum disorder (ASD). We postulate that children with ASD harbour an altered developmental profile of the gut microbiota distinct from that of typically developing (TD) children. Here, we aimed to characterise compositional and functional alterations in gut microbiome in association with age in children with ASD and to identify novel faecal bacterial markers for predicting ASD.DesignWe performed deep metagenomic sequencing in faecal samples of 146 Chinese children (72 ASD and 74 TD children). We compared gut microbial composition and functions between children with ASD and TD children. Candidate bacteria markers were identified and validated by metagenomic analysis. Gut microbiota development in relation to chronological age was assessed using random forest model.ResultsASD and chronological age had the most significant and largest impacts on children’s faecal microbiome while diet showed no correlation. Children with ASD had significant alterations in faecal microbiome composition compared with TD children characterised by increased bacterial richness (p=0.021) and altered microbiome composition (p<0.05). Five bacterial species were identified to distinguish gut microbes in ASD and TD children, with areas under the receiver operating curve (AUC) of 82.6% and 76.2% in the discovery cohort and validation cohort, respectively. Multiple neurotransmitter biosynthesis related pathways in the gut microbiome were depleted in children with ASD compared with TD children (p<0.05). Developing dynamics of growth-associated gut bacteria (age-discriminatory species) seen in TD children were lost in children with ASD across the early-life age spectrum.ConclusionsGut microbiome in Chinese children with ASD was altered in composition, ecological network and functionality compared with TD children. We identified novel bacterial markers for prediction of ASD and demonstrated persistent underdevelopment of the gut microbiota in children with ASD which lagged behind their respective age-matched peers.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S896-S897
Author(s):  
Faris S Alnezary ◽  
Tasnuva Rashid ◽  
Khurshida Begum ◽  
Travis J Carlson ◽  
Anne J Gonzales-Luna ◽  
...  

Abstract Background Antimicrobials disrupt the gut microbiota by reducing gut microbiome diversity and quantity. Galleria mellonella provides an invertebrate model that is inexpensive, easy to maintain, and does not require specialized equipment. This study investigated the feasibility of using G. mellonella as an in vivo model to evaluate the effect of different antimicrobials on gut microbiota. Methods To determine baseline gut microbiota composition, the gut contents of G. mellonella were extracted and genomic DNA underwent shotgun meta-genomic sequencing. To determine the effect of infection and antibiotic use, 30 larvae were injected (left proleg) with ~1 × 105 colony-forming unit (cfu) of methicillin-resistant Staphylococcus aureus (MRSA) and were randomized 1:1:1 to treatment with vancomycin (20 mg/kg) or a natural antimicrobial (Nigella sativa seed oil, 70 mg/kg; NS oil), or a combination. The larvae were kept at 37°C post-infection and monitored daily for 72 hours for activity, extent of cocoon formation/growth, melanization, and survival. Two larvae from each group were randomly selected and homogenized with PBS as controls. After 24 hours of incubation, gut contents were extracted and plated for MRSA and Enterococcus cfu counts. Results Metagenomics analysis showed the gut microbiota composition of G. mellonella larvae was dominated by a subset of closely-related Enterococcus species. After 24 hours of exposure, mean Enterococcus counts were 4 × 103 cfu in the vancomycin arm and 6.2 × 104 cfu in the NS oil arm. Mean MRSA counts were 3.3 × 105 cfu in vancomycin arm and 1.5 × 104 cfu in NS oil arm. The combination of vancomycin and NS oil had higher Enterococcus counts than the vancomycin alone arm (6.3 × 104 cfu vs. 4 × 103 cfu, respectively), suggesting that NS oil may have a role in protecting the gut microbiota. Conclusion This study provides preliminary evidence to support the potential use of G. mellonella to assess the in vivo effect of a natural and synthetic antimicrobial on the gut microbiota. Disclosures All authors: No reported disclosures.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 294 ◽  
Author(s):  
Anna Shmagel ◽  
Ryan Demmer ◽  
Daniel Knights ◽  
Mary Butler ◽  
Lisa Langsetmo ◽  
...  

Oral glucosamine sulfate (GS) and chondroitin sulfate (CS), while widely marketed as joint-protective supplements, have limited intestinal absorption and are predominantly utilized by gut microbiota. Hence the effects of these supplements on the gut microbiome are of great interest, and may clarify their mode of action, or explain heterogeneity in therapeutic responses. We conducted a systematic review of animal and human studies reporting the effects of GS or CS on gut microbial composition. We searched MEDLINE, EMBASE, and Scopus databases for journal articles in English from database inception until July 2018, using search terms microbiome, microflora, intestinal microbiota/flora, gut microbiota/flora and glucosamine or chondroitin. Eight original articles reported the effects of GS or CS on microbiome composition in adult humans (four articles) or animals (four articles). Studies varied significantly in design, supplementation protocols, and microbiome assessment methods. There was moderate-quality evidence for an association between CS exposure and increased abundance of genus Bacteroides in the murine and human gut, and low-quality evidence for an association between CS exposure and an increase in Desulfovibrio piger species, an increase in Bacteroidales S24-7 family, and a decrease in Lactobacillus. We discuss the possible metabolic implications of these changes for the host. For GS, evidence of effects on gut microbiome was limited to one low-quality study. This review highlights the importance of considering the potential influence of oral CS supplements on gut microbiota when evaluating their effects and safety for the host.


Sign in / Sign up

Export Citation Format

Share Document