scholarly journals miR-636 inhibits EMT, cell proliferation and cell cycle of ovarian cancer by directly targeting transcription factor Gli2 involved in Hedgehog pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods Protein–protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination. Results Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo. Conclusion miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC. Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.

2020 ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Background: Hedgehog (Hh) signaling pathway, which is essential for cell proliferation and differentiation, is noted to be aberrantly activated in tumor from increasing studies in recent years. MicroRNAs (miRNAs) as an important non-coding RNA in cells have been proven to possess a regulatory role specific to the Hh signaling pathway. Here, in vitro and in vivo cellular/molecular experiments were adopted to clarify the regulatory mechanism linking miR-636 to the Hh signaling pathway in ovarian cancer (OVC). Methods: Protein-protein interaction analysis was performed to identify the hub gene in the Hh pathway. TargetScan database was used to predict the potential upstream regulators for Gli2. qRT-PCR was performed to test the expression of miR-636, while Western blot was conducted to detect the expression of proteins related to the Hh pathway and epithelial-mesenchymal transition (EMT). For cell functional experiments, HO-8910PM OVC cell line was used. MTT assay and wound healing assay were used to measure the effect of miR-636 on cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used to identify the change in expression of Hh and EMT-related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeting relationship between miR-636 and Gli2. Xenotransplantation models were established for in vivo examination.Results: Gli2 was identified as the hub gene of the Hh pathway and it was validated to be regulated by miR-636 based on the data from TargetScan and GEO databases. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines, and overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation, migration and induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 caused opposite results. Dual-luciferase reporter gene assay revealed that Gli2 was the target gene of miR-636 in OVC. Besides, overexpressed miR-636 decreased protein expression of Gli2, and affected the expression of proteins related to the Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration, and attenuated the blocking effect of miR-636 on cell cycle. The xenotransplantation experiment suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process of OVC cells via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation in vivo.Conclusion: miR-636 mediates the activation of the Hh pathway via binding to Gli2, thus inhibiting EMT, suppressing cell proliferation and migration of OVC.Trial registration: The experimental protocol was established, according to the ethical guidelines of the Helsinki Declaration and was approved by the Human Ethics Committee of The Second Affiliated hospital of Zhejiang University School of Medicine (IR2019001235). Written informed consent was obtained from individual or guardian participants.


2020 ◽  
Author(s):  
Jiong Ma ◽  
Chunxia Zhou ◽  
Xuejun Chen

Abstract Objective: Ovarian cancer (OVC) is the fifth leading cause of cancer-related deaths in women and has a significant impact on physical and mental health of women. This study explores the molecular mechanism of miR-636 acting as a tumor suppressor in OVC in vitro and in vivo, and provides new insight into the treatment of OVC.Methods: Protein-protein interaction (PPI) analysis was performed to identify the hub gene in Hedgehog (Hh) pathway. TargetScan database was used to predict the upstream regulatory miRNAs of Gli2 to obtain the target miRNA. qRT-PCR was performed to test the expression of miR-636, while Western blot were conducted to detect the expression of Hh and EMT (epithelial-mesenchymal transition) related genes in OVC cell lines. MTT assay and wound healing assay were used to measure the effect of miR-636 on OVC cell proliferation and migration. Flow cytometry was carried out to examine the effect of miR-636 on cell cycle, and Western blot was used for identification of changes in expression of Hh and EMT related proteins. Dual-luciferase reporter gene assay was implemented to detect the targeted relationship between miR-636 and Gli2. The xenotransplantation model was used to detect the effect of miR-636 on OVC cell proliferation in vivo.Results: PPI interaction analysis found that Gli2 was the hub gene in Hh pathway. Based on TargetScan and GEO databases, Gli2 was found to be targeted regulated by the upstream miR-636. In vitro experiments discovered that miR-636 was significantly lowly expressed in OVC cell lines. Overexpressing miR-636 significantly inhibited HO-8910PM cell proliferation and migration abilities as well as induced cell cycle arrest in G0/G1 phase, while the inhibition of miR-636 promoted cell proliferation and migration abilities. Dual-luciferase reporter gene assay revealed that Gli2 was a target gene of miR-636. Besides, overexpressing miR-636 decreased protein expression of Gli2, while the inhibition of miR-636 increased protein expression of Gli2. Furthermore, the overexpression and inhibition of miR-636 both affected the expression of proteins related to Hh signaling pathway and EMT. Rescue experiments verified that overexpression of Gli2 reversed the inhibitory effect of miR-636 on HO-8910PM cell proliferation and migration abilities, and attenuated the blocking effect of miR-636 on HO-8910PM cell cycle. The xenotransplantation model suggested that miR-636 inhibited cell growth of OVC by decreasing Gli2 expression. Besides, overexpressing Gli2 potentiated the EMT process in OVC via decreasing E-cadherin protein expression and increasing Vimentin protein expression, and it reversed the inhibitory effect of miR-636 on OVC cell proliferation and migration abilities in vivo.Conclusion: miR-636 inhibits the Hh pathway activation via targeted binding to Gli2, thus inhibiting EMT, cell proliferation and migration in OVC.


2021 ◽  
Vol 30 ◽  
pp. 096368972110255
Author(s):  
Qing Wang ◽  
Kai Li ◽  
Xiaoliang Li

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Increasing evidence suggests that long non-coding RNAs (lncRNAs) function in the tumorigenesis of NSCLC. LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in several cancers. However, its specific role in NSCLC remains unclear. In this study, we determined the expression of LINC00958 in NSCLC by RT-qPCR analysis and evaluated cell proliferation and migration by CCK-8 and transwell assays, respectively. We established a xenograft tumor model to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A. We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Besides, miR-204-3p was identified as a target of LINC00958 and miR-204-3p inhibitor could reverse the inhibitory effect of LINC00958 knockdown on proliferation and migration of NSCLC cells. We also validated that KIF2A, a direct target of miR-204-3p, was responsible for the biological role of LINC00958. KIF2A antagonized the effect of miR-204-3p on NSCLC cell proliferation and migration and was regulated by LINC00958/miR-204-3p. Taken together, these data indicate that the LINC00958/miR-204-3p/KIF2A axis is critical for NSCLC progression, which might provide a potential therapeutic target of NSCLC.


2021 ◽  
Vol 10 ◽  
Author(s):  
Mengya Zhong ◽  
Xingfeng Qiu ◽  
Yu Liu ◽  
Yan Yang ◽  
Lei Gu ◽  
...  

Tumor necrosis factor-induced protein-8 (TIPE) is highly expressed in colorectal cancer (CRC). Decoy receptor 3 (DcR3) is a soluble secreted protein that can antagonize Fas ligand (FasL)-induced apoptosis and promote tumorigenesis. It remains unclear whether TIPE can regulate DcR3 expression. In this study, we examined this question by analyzing the relationship between these factors in CRC. Bioinformatics and tissue microarrays were used to determine the expression of TIPE and DcR3 and their correlation in CRC. The expression of TIPE and DcR3 in colon cancer cells was detected. Plasma samples were collected from CRC patients, and DcR3 secretion was measured. Then, dual-luciferase reporter gene analysis was performed to assess the interaction between TIPE and DcR3. We exogenously altered TIPE expression and analyzed its function and influence on DcR3 secretion. Lipopolysaccharide (LPS) was used to stimulate TIPE-overexpressing HCT116 cells, and alterations in signaling pathways were detected. Additionally, inhibitors were used to confirm molecular mechanisms. We found that TIPE and DcR3 were highly expressed in CRC patients and that their expression levels were positively correlated. DcR3 was highly expressed in the plasma of cancer patients. We confirmed that TIPE and DcR3 were highly expressed in HCT116 cells. TIPE overexpression enhanced the transcriptional activity of the DcR3 promoter. TIPE activated the PI3K/AKT signaling pathway to regulate the expression of DcR3, thereby promoting cell proliferation and migration and inhibiting apoptosis. In summary, TIPE and DcR3 are highly expressed in CRC, and both proteins are associated with poor prognosis. TIPE regulates DcR3 expression by activating the PI3K/AKT signaling pathway in CRC, thus promoting cell proliferation and migration and inhibiting apoptosis. These findings may have clinical significance and promise for applications in the treatment or prognostication of CRC.


2021 ◽  
Author(s):  
Fatemeh Gheidari ◽  
Ehsan Arefian ◽  
Mahboubeh Kabiri ◽  
Ehsan Seyedjafari ◽  
Ladan Teimoori-Toolabi ◽  
...  

Abstract Glioblastoma is aggressive and lethal brain cancer, which is incurable by cancer standard treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in glioblastoma and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in glioblastoma patients, which is responsible for augmented cell proliferation and migration in glioblastoma multiforme (GBM). Here we overexpressed miR-429 using lentiviral vectors in GBM U-251 cells and observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased; as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest in flow cytometry. Altogether miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for glioblastoma.


2020 ◽  
Vol 20 (4) ◽  
pp. 288-294 ◽  
Author(s):  
Xinyu Tan ◽  
Duxun Tan ◽  
Haomiao Li ◽  
Ye Lin ◽  
Zhishen Wen ◽  
...  

Background: Recent studies have reported the vital roles of circular RNAs (circRNAs) in tumor progression. However, the function and expression profile of most circRNAs in osteosarcoma remain unclear. Methods: We examined the expression of circEPSTI1, a circRNA, in 50 paired adjacent normal tissues and osteosarcoma tissues by qRT-PCR. Then, we further explored the function of circEPSTI1 in osteosarcoma progression in vitro and in vivo. For example, cell proliferation and migration were examined. Some experiments were performed to explore the regulatory function of circEPSTI1 in miRNA and to investigate the potential role of circEPSTI1 in osteosarcoma. Results: We found that circEPSTI1 was significantly upregulated in osteosarcoma. Inhibition of circEPSTI1 suppressed the osteosarcoma cancer cell proliferation and migration in vitro. Dual luciferase reporter assay showed that circEPSTI1 and MCL1 (myeloid cell leukaemia 1) could bind to miR-892b and that MCL1 and circEPSTI1 were targets of miR-892b. Conclusion: Thus, the circEPSTI1-miR-892b-MCL1 axis affected osteosarcoma progression through the miRNA sponging mechanism. circEPSTI1 may serve as a target and biomarker for osteosarcoma treatment.


Author(s):  
Danyi Zhao ◽  
Huawei Chen ◽  
Bing Wang

The aim of this study was to assess the regulatory functions of SNHG11 in gastric cancer (GC) cell proliferation and migration. Dual-luciferase reporter assay and bioinformatics prediction [starBase (http://starbase.sysu.edu.cn/) and TargetScan (http://www.targetscan.org)] indicated that SNHG11 functions as a miR-184 sponge that can directly act on CDC25A. Compared with normal healthy gastric tissue and mucosal epithelial cell GES-1, SNHG11 and CDC25A expressions were dramatically increased in GC samples and cell lines, whereas microRNA-184 (miR-184) levels were reduced. SNHG11 silencing led to increased miR-184 and reduced CDC25A, whereas miR-184 downregulation recovered the expression of CDC25A. Additionally, miR-184 upregulation also played a role in regulating CDC25A ablation. Then, SNHG11 was silenced or miR-184 was upregulated in two GC cells (SGC-7901 and MKN-28). SNHG11 silencing and miR-184 upregulation caused a notable decrease in GC cell growth and proliferation and increased the apoptotic level of GC cells. Furthermore, SNHG11 silencing and miR-184 upregulation contributed to a decreased migration capacity of GC cells. Downregulated miR-184 expression in SNHG11 silenced GC cells showed that miR-184 inhibition reversed the effect of SNHG11 silencing on the growth, proliferation, apoptosis, and migration of GC cells. Moreover, in vivo xenograft experiments demonstrated that SNHG11 knockdown can inhibit tumor growth. These observations confirmed that SNHG11 acts as an oncogene, whereas miR-194 served as a tumor suppressor in GC development. SNHG11 may provide a new biomarker for GC diagnosis, treatment, and prognosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Quan Lin ◽  
Yan Jia ◽  
Duo Zhang ◽  
Hongjuan Jin

Abstract Background Long non-coding RNAs (lncRNAs) are vital regulators of gene expression and cellular processes in multiple cancers, including melanoma. Nevertheless, the function of lncRNA NCK1-antisense 1 (NCK1-AS1) in melanoma remains unknown. Methods RT-qPCR was used to analyze the expression of NCK1-AS1, microRNA-526b-5p (miR-526b-5p) and ADAM metallopeptidase domain 15 (ADAM15). Cell proliferation was determined by CCK-8, colony formation and EdU assays. Cell migration was assessed by transwell migration and wound healing assays. Mechanism experiments including luciferase reporter, RIP and RNA pull down assays were conducted to demonstrate the interactions between RNAs. Xenograft model was established to verify the function of NCK1-AS1 and miR-526b-5p in melanoma in vivo. Results NCK1-AS1 was overexpressed in melanoma cell lines and NCK1-AS1 knockdown hampers the proliferation and migration of melanoma cells. Besides, miR-526b-5p binds to NCK1-AS1 in melanoma and ADAM15 was validated as its downstream target. Further, the inhibitory effects of NCK1-AS1 knockdown on cell proliferation and migration in melanoma were reversed by the depletion of miR-526b-5p and further counteracted by ADAM15 knockdown. The growth of melanoma tumors was hindered by the down-regulation of NCK1-AS1 or up-regulation of miR-526b-5p. Conclusion NCK1-AS1 facilitates cell proliferation and migration in melanoma via targeting miR-526b-5p/ADAM15 axis.


2018 ◽  
Vol 46 (4) ◽  
pp. 1439-1454 ◽  
Author(s):  
Xiaoxiao Liu ◽  
Yifeng Xu ◽  
Yunfei Deng ◽  
Hongli Li

Background/Aims: Percutaneous coronary intervention reduces acute myocardial infarction (MI)-induced mortality to a great extent, but effective treatments for MI-induced cardiac fibrosis and heart failure are still lacking. MicroRNAs (miRNAs) play a variety of roles in cells and have thus been investigated extensively. MicroRNA-223 (miR-223) expression has been reported to be altered in post-MI heart failure in humans; however, the roles of miR-223 in MI remain unknown. Our study aimed to elucidate the roles of miR-223 in cardiac fibrosis. Methods: Cultured cardiac fibroblasts (CFs) were activated by TGF-β1 stimulation. Gain and loss of miR-223 and RAS p21 protein activator 1 (RASA1) knockdown in CFs were achieved by transfecting the cells with miR-223 mimics and inhibitors, as well as small interfering RNA-RASA1 (siRASA1), respectively. Quantitative real-time reverse transcriptase-polymerase chain reactions (qRT-PCR) was used to determine miR-223-3p and RASA1 expression levels, and Cell Counting Kit-8 (CCK-8), transwell migration and scratch assays were performed to assess CFs viability and migration, respectively. Western blotting was used to detect collagen I, collagen III, alpha-smooth muscle actin (a-SMA), RASA1, p-Akt/t-Akt, p-MEK1/2/t-MEK1/2, and p-ERK1/2/t-ERK1/2 protein expressions, and immunofluorescence assays were used to detect the expression of α-actin, vimentin and α-SMA. Luciferase assays were carried out to determine whether miR-223 binds to RASA1. Rat models of MI were established by the ligation of the left anterior descending (LAD) coronary artery. MiR-223 inhibition in vivo was achieved via intramyocardial injections of the miR-223 sponge carried by adeno-associated virus 9 (AAV9). The cardiac function was detected by echocardiography, and cardiac fibrosis was shown by Masson’s trichrome staining. Results: miR-223 was increased in CFs compared to cardiomypcytes, and TGF-β1 treatment increased miR-223 expression in CFs. The miR-223 mimics enhanced cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression in CFs, while the miR-223 inhibitors had contrasting effects and partially prevented the promoting effects of TGF-β1. qRT-PCR and western blotting revealed that miR-223 negatively regulated RASA1 expression, and the luciferase assays showed that miR-223 suppressed the luciferase activity of the RASA1 3’ untranslated region (3'UTR), indicating that miR-223 binds directly to RASA1. Similar to transfection with the miR-223 mimics, RASA1 knockdown enhanced cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression in CFs. Moreover, RASA1 knockdown partially reversed the inhibitory effects of the miR-223 inhibitor on cell proliferation and migration and collagen I, collagen III, and α-SMA protein expression, indicating that the effects of miR-223 in CFs are partially mediated by the regulation of RASA1 expression. Further exploration showed that miR-223 mimics and siRASA1 promoted MEK1/2, ERK1/2 and AKT phosphorylation, while the miR-223 inhibitors had contrasting effects. The in vivo experiments confirmed the results of the in vitro experiments and showed that miR-223 inhibition prevented cardiac functional deterioration and cardiac fibrosis. Conclusions: miR-223 enhanced cell proliferation, migration, and differentiation in CFs, thus mediated cardiac fibrosis after MI partially via the involvement of RASA1.


2020 ◽  
Author(s):  
Guan-Bin Qi ◽  
Lei Li

Abstract Background: LINC00958, a newly identified lncRNA, has been reported to be closely linked to tumorigenesis in multiple cancers. However, its specific role in non-small cell lung cancer (NSCLC) remains unclear.Methods: The expression of LINC00958 was determined by RT-qPCR analysis. Cell proliferation and migration were evaluated by CCK-8 and transwell assays, respectively. Xenograft tumor models were established to examine the effect of LINC00958 on tumor growth in vivo. Luciferase reporter assays were performed to determine the interaction between LINC00958 and miR-204-3p and the interaction between miR-204-3p and KIF2A.Results: We found that LINC00958 was up-regulated in NSCLC tissues and cell lines. Down-regulation of LINC00958 inhibited cell proliferation and migration in vitro and suppressed tumor growth in vivo. Mechanically, we revealed that LINC00958 influenced NSCLC progression partly by sponging miR-204-3p and regulating KIF2A expression.Conclusions: Our study provided new insights into the role of LINC00958 as a promising prognostic biomarker and a therapeutic target for NSCLC.


Sign in / Sign up

Export Citation Format

Share Document