scholarly journals SP1 induced Long non-coding RNA AGAP2-AS1 promotes cholangiocarcinoma proliferation via silencing of CDKN1A 

2020 ◽  
Author(s):  
Hao Ji ◽  
Juan Wang ◽  
Binbin Lu ◽  
Juan Li ◽  
Jing Zhou ◽  
...  

Abstract Background: LncRNA can regulate gene at various levels such as apparent genetics, alternative splicing, and regulation of mRNA degradation. However, the molecular mechanism of LncRNA in cholangiocarcinoma is still unclear. This deserves further exploration. Methods:We investigated the expression of AGAP2-AS1 in 32 CCA tissues and two CCA cell lines. We found a LncRNA AGAP2-AS1 which induced by SP1 has not been reported in CCA, and Knockdown and overexpression were used to investigate the biological role of AGAP2-AS1 in vitro. CHIP and RIP were performed to verify the putative targets of AGAP2-AS1. Results:AGAP2-AS1 was significantly upregulated in CCA tumor tissues.SP1 induced AGAP2-AS1 plays an important role in tumorigenesis. AGAP2-AS1 knockdown significantly inhibited proliferation and caused apoptosis in CCA cells. In addition, we demonstrated that AGAP2-AS1 promotes the proliferation of CCA. Conclusions: We conclude that the long non-coding RNA AGAP2-AS1 plays a role in promoting the proliferation of cholangiocarcinoma.


2020 ◽  
Author(s):  
Hao Ji ◽  
Juan Wang ◽  
Binbin Lu ◽  
Juan Li ◽  
Jing Zhou ◽  
...  

Abstract Background: LncRNA can regulate gene at various levels such as apparent genetics, alternative splicing, and regulation of mRNA degradation.However, the molecular mechanism of LncRNA in cholangiocarcinoma is still unclear.This deserves further exploration.Methods: We investigated the expression of AGAP2-AS1 in 32 CCA tissues and two CCA cell lines. We found a LncRNA AGAP2-AS1 which induced by SP1 has not been reported in cholangiocarcinoma and studied itKnockdown and overexpression were used to investigate the biological role of AGAP2-AS1 in vitro. CHIP and RIP were performed to verify the putative targets of AGAP2-AS1.Results: AGAP2-AS1 was significantly upregulated in 32 CCA tumor tissues.SP1 induced AGAP2-AS1 plays an important role in tumorigenesis.AGAP2-AS1 knockdown significantly inhibited proliferation and caused apoptosis in CCA cells. In addition, we demonstrated that AGAP2-AS1 acts as an oncogene in CCA.Conclusions: We conclude that the long non-coding RNA AGAP2-AS1 plays a role in promoting the proliferation of cholangiocarcinoma.



2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Hao Ji ◽  
Juan Wang ◽  
Binbin Lu ◽  
Juan Li ◽  
Jing Zhou ◽  
...  

Abstract Background LncRNA can regulate gene at various levels such as apparent genetics, alternative splicing, and regulation of mRNA degradation. However, the molecular mechanism of LncRNA in cholangiocarcinoma is still unclear. This deserves further exploration. Methods We investigated the expression of AGAP2-AS1 in 32 CCA tissues and two CCA cell lines. We found a LncRNA AGAP2-AS1 which induced by SP1 has not been reported in CCA, and Knockdown and overexpression were used to investigate the biological role of AGAP2-AS1 in vitro. CHIP and RIP were performed to verify the putative targets of AGAP2-AS1. Results AGAP2-AS1 was significantly upregulated in CCA tumor tissues. SP1 induced AGAP2-AS1 plays an important role in tumorigenesis. AGAP2-AS1 knockdown significantly inhibited proliferation and caused apoptosis in CCA cells. In addition, we demonstrated that AGAP2-AS1 promotes the proliferation of CCA. Conclusions We conclude that the long non-coding RNA AGAP2-AS1 plays a role in promoting the proliferation of cholangiocarcinoma.



2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.



2018 ◽  
Vol 49 (4) ◽  
pp. 1403-1419 ◽  
Author(s):  
Yunxiuxiu Xu ◽  
Xinxi Luo ◽  
Wenguang He ◽  
Guangcheng Chen ◽  
Yanshan Li ◽  
...  

Background/Aims: To investigate the biological roles and underlying molecular mechanisms of long non-coding RNA (lncRNA) PVT1 in Hepatocellular carcinoma (HCC). Methods: qRT-PCR was performed to measure the expression of miRNA and mRNA. Western blot was performed to measure the protein expression. CCK-8 assay was performed to determine cell proliferation. Flow cytometry was performed to detect cell apoptosis. Wounding-healing assay and Transwell assay was performed to detect cell migration and invasion. Dual luciferase reporter assay was performed to verify the target relationship. Quantichrom iron assay was performed to check uptake level of cellular iron. Results: PVT1 expression was up-regulated in HCC tissues and cell lines. Function studies revealed that PVT1 knockdown significantly suppressed cell proliferation, migration and invasion, and induced cell apoptosis in vitro. Furthermore, PVT1 could directly bind to microRNA (miR)-150 and down-regulate miR-150 expression. Hypoxia-inducible protein 2 (HIG2) was found to be one target gene of miR-150, and PVT1 knockdown could inhibit the expression of HIG2 through up-regulating miR-150 expression. In addition, the expression of miR-150 was down-regulated, while the expression of HIG2 was up-regulated in HCC tissues and cell lines. Moreover, inhibition of miR-150 could partly reverse the biological effects of PVT1 knockdown on proliferation, motility, apoptosis and iron metabolism in vitro, which might be associated with dysregulation of HIG2. In vivo results showed that PVT1 knockdown suppressed tumorigenesis and iron metabolism disorder by regulating the expression of miR-150 and HIG2. Conclusion: Taken together, the present study demonstrates that PVT1/miR-150/HIG2 axis may lead to a better understanding of HCC pathogenesis and provide potential therapeutic targets for HCC.



2015 ◽  
Vol 35 (6) ◽  
Author(s):  
Haifeng Wang ◽  
Xu Gao ◽  
Xin Lu ◽  
Yan Wang ◽  
Chunfei Ma ◽  
...  

The mitotic regulator Hec1 (highly expressed in cancer), is a member of a conserved Ndc80 (nuclear division cycle 80) complex that regulates mitotic processes. We find that Hec1 is consistently overexpressed in human prostate cancer and Hec1 is closely linked with human prostate cancer progression through the meditator LncRNA BX647187. Our studies may contribute to understand the molecular mechanism of PCa pathogenesis and clinical therapy.



2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.



2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Chen ◽  
Long Huang ◽  
Ge Li ◽  
Funan Qiu ◽  
Yaodong Wang ◽  
...  

Abstract Previous studies suggest the tumor suppressor role of long non-coding RNA (lncRNA) STXBP5-AS1 in cervical and gastric cancer, but its expression pattern and functional mechanism are still elusive in pancreatic cancer (PC). Relative expression of STXBP5-AS1 in PC both in vivo and in vitro was analyzed by real-time PCR. IC50 of Gemcitabine was determined by the MTT assay. Cell proliferation in response to drug treatment was investigated by colony formation assay. Cell apoptosis was measured by both caspase-3 activity and Annexin V/PI staining. Cell invasion capacity was scored by the transwell assay in vitro, and lung metastasis was examined with the tail vein injection assay. Cell stemness was determined in vitro by sphere formation and marker profiling, respectively, and in vivo by limited dilution of xenograft tumor incidence. Subcellular localization of STXBP5-AS1 was analyzed with fractionation PCR. Association between STXBP5-AS1 and EZH2 was investigated by RNA-immunoprecipitation. The binding of EZH2 on ADGB promoter was analyzed by chromatin immunoprecipitation. The methylation was quantified by bisulfite sequencing. We showed downregulation of STXBP5-AS1 in PC associated with poor prognosis. Ectopic STXBP5-AS1 inhibited chemoresistance and metastasis of PC cells. In addition, STXBP5-AS1 compromised stemness of PC cells. Mechanistically, STXBP5-AS1 potently recruited EZH2 and epigenetically regulated neighboring ADGB transcription, which predominantly mediated the inhibitory effects of STXBP5-AS1 on stem cell-like properties of PC cells. Our study highlights the importance of the STXBP5-EZH2-ADGB axis in chemoresistance and stem cell-like properties of PC.



2021 ◽  
Vol 11 ◽  
Author(s):  
Guanqun Chao ◽  
Zhaojun Wang ◽  
Yi Yang ◽  
Shuo Zhang

ObjectiveThe study aimed to investigate the role of Long non-coding RNA (LncRNA) H19 in the pathogenesis of Diarrhea Irritable Bowel Syndrome (IBS-D), and further to the regulatory effect of LncRNA H19 on AQP1, 3 in the intestinal mucosa of IBS-D patients, so as to seek a new way to elucidate the mechanism of IBS in clinic.MethodsThe levels of LncRNA H19, AQP1, and AQP3 were detected in colonic tissues of IBS-D patients, compared with that in healthy controls. Through RNA gene interference and activation methods, small activating RNA (saRNA) and small interfering (siRNA) were transfered into Caco-2 cells in vitro experiment, and sub-group for two control group, siH19 empty vector group, siH19 interference group, overexpression H19 vector group, and overexpression H19 empty vector group. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot were applied to evaluate the expression levels of LncRNA H19 and the amount of AQP1 and AQP3 protein expression, respectively.ResultsCompared with healthy volunteers, the levels of LncRNA H19, AQP1, and AQP3 in the colonic mucosa of IBS-D patients were significantly decreased (P < 0.05). The results in vitro transfection experiment revealed that the level of LncRNA H19 in the siH19 interference group was significantly declined (P < 0.05), while there was a remarkable increase in the overexpression H19 vector group (P < 0.05), compared with the corresponding control groups. The expression of AQP1 and AQP3 in Caco-2 cells was of positive correlation with the level of LncRNA H19.ConclusionThat the down-regulation of LncRNA H19 resulted in the expression changes of AQP1 and AQP3 may play an important role in the occurrence and development of IBS-D.



Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 833-833
Author(s):  
Sophia Adamia ◽  
Mariateresa Fulciniti ◽  
Herve Avet-Loiseau ◽  
Samir B Amin ◽  
Parantu Shah ◽  
...  

Abstract Abstract 833 A growing body of evidence suggests that the genome of a many organisms, particularly mammals is controlled not only by transcription factors but also by post-transcriptional programs that are modulated by the family of small RNA molecules including microRNAs (miRs). miRs can block mRNA translation and affect mRNA stability. We have evaluated profiles of 384 human miRs in CD138+ cells from 79 patients with multiple myeloma (MM), 11 MM cell lines and 9 healthy donors (HD) using qRT-PCR based microRNA array. This analysis has identified a MM specific miRNA signature that significantly correlates with OS (p=0.05) and EFS (p=0.017) of patients. Based on this signature one group of patients clustered with HD suggesting indolent disease while other with cell lines indicating aggressive disease. We identified significant modulation of expression of 61 microRNAs in MM cells compared to normal plasma cells. Specific miRs with established oncogenic and tumor suppressor functions such as miR-155, miR-585 and Let7-f were significantly dysregulated in MM (p<0.001). Modulation of miRs-155, -585 and Let7 were observed most frequently in the group of patients with poor OS and EFS suggesting their crucial role in MM. However biological role of these miRs have not yet been defined. To further evaluate biological function of these most recurrent miRs in MM, we evaluated role of miR-155, let-7f and mir-585 in MM cell lines by gain- and loss- of function experiments. We used locked nucleic acid (LNA) anti-miR probes for loss of function and pre-miR-155 for gain of function studies using them alone or in combination. Although manipulation of all 3 miRs induced 20-25% change in MM cell proliferation and/or induction of apoptosis, combination of anti-miR-let7f with pre-miR-155, and anti-miR-585 in combination with miR-155 had dramatic effects on MM cell proliferation and over 60% cells undergoing apoptosis. To evaluate the targets of these miRs, we have determined effects of these anti-miRs and pre-miR on global gene and miR expression profile in MM alone and in combinations. This analysis identified modulation of cluster of miRs as well as genes critical for cell growth and survival. Next, we have tested efficacy of these miRs in vivo in murine Xenograft model to evaluate their therapeutic potential. Tumor-bearing mice were treated intraperitoneal for four consecutively days with the LNA anti-miR-585 and Let-7 and pre-miR-155 probes and respective controls alone and in combination. We observed that the single LNA anti-miR-585 and let 7 and pre miR-155 treatment reduced tumor size by 36%, 31% and 155% in animal 7 days after treatment. However, significant tumor size reductions were achieved when animals were treated with combinations; anti-miR-Let 7f plus pre-miR-155 (58 %); LNA anti-miR-Let 7f plus LNA anti-miR-585 (56 %); LNA-anti-miR-585 plus pre-miR-155 (74 %).We did not observe any significant systemic toxicity in the animals. In conclusion our results suggest significant biological role for miR-585, let 7f and miR-155 in myeloma, both in vitro and in vivo; it highlights for the first time a concerted activity of combination of miRs and holds a great promise for developing novel therapeutic approach for myeloma. Disclosures: No relevant conflicts of interest to declare.



2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.



Sign in / Sign up

Export Citation Format

Share Document