scholarly journals Rhazya Stricta Assisted Green Synthesis of Multifunctional Carbon Coated Copper Oxide Nanosheets for Photocatalysis of Dyes and Antibacterial Candidate Against Solanaceous Pathogens

Author(s):  
Hamida Bibi ◽  
Mudassar Iqbal ◽  
Hassan Wahab ◽  
Mehmet Öztürk ◽  
Fei Ke ◽  
...  

Abstract The studies of metal oxides in environmental remediation of chemical and biological pollutants are gaining huge importance. Herein, we report the facile synthesis of multi-functional copper oxide nanosheets (CuO NS) using an aqueous extract of Rhazya stricta. The phytochemical investigation of R. stricta indicated the presence of saponins, tannins, and reducing sugars responsible for the reduction and stabilization of CuO NS. The formation of CuO NS was confirmed by x-ray diffraction and UV-visible spectrophotometer with specific Surface Plasmon Resonance at 294 nm. Further characterization of the CuO NS was done by FE-SEM, FTIR, and XRD. The obtained CuO NS were poly-dispersed with an average size of 20 nm. Interestingly these particles were aligned together in the form of 3D cubical sheets layered above each other via self-assembly. The as-synthesized CuO NS shows enhanced antibacterial potential (17.63 mm, mean inhibition zone) as compared to the known antibiotics (11.51 mm, mean inhibition zone) against the wilt causing bacteria of Solanaceous crop, including Ralstonia solanacearum and Clavibacter michiganensis. Furthermore, the appreciable photocatalytic potential of CuO NS has been observed, causing 83% degradation of methylene blue (MB) upon solar irradiation. The synthesis methodology is devoid of any toxic waste and/or by-products and could be used to produce eco-friendly CuO nanomaterial for industrial uses.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamida Bibi ◽  
Mudassar Iqbal ◽  
Hassan Wahab ◽  
Mehmet Öztürk ◽  
Fei Ke ◽  
...  

AbstractThe studies of metal oxides in environmental remediation of chemical and biological pollutants are gaining colossal importance. Herein, we report the facile synthesis of multifunctional copper oxide nanosheets (CuO NS) using an aqueous extract of Rhazya stricta. The phytochemical investigation of R. stricta indicated the presence of saponins, tannins, and reducing sugars, responsible for the reduction and stabilization of CuO NS. A UV–Visible spectrophotometer initially confirmed the fabrication of CuO NS with specific Surface Plasmon Resonance at 294 nm. Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-transform infrared spectroscopy FTIR, and XRD were further used to characterize the CuO NS. The obtained CuO NS were poly-dispersed with an average size of 20 nm. Interestingly these particles were aligned together in 3D cubical sheets layered above each other via self-assembly. The as-synthesized CuO NS showed enhanced antibacterial potential (17.63 mm, overall mean inhibition zone) in comparison to the known antibiotics (11.51 mm, overall mean inhibition zone) against both Solanaceous crop's wilt-causing bacteria (Ralstonia solanacearum and Clavibacter michiganensis). Furthermore, the appreciable photocatalytic potential of CuO NS has also been observed, causing 83% degradation of methylene blue (MB) upon solar irradiation. The synthesis methodology is devoid of any toxic waste or by-products. It could be used to produce eco-friendly CuO nanomaterial for industrial uses.


Author(s):  
Krishna Sailaja A ◽  
Amareshwar P

In order to see the functionality and toxicity of nanoparticles in various food and drug applications, it is important to establish procedures to prepare nanoparticles of a controlled size. Desolvation is a thermodynamically driven self-assembly process for polymeric materials. In this study, we prepared BSA nanoparticles using the desolvation technique using acetone as desolvating agent. Acetone was added intermittently into 1% BSA solution at different pH under stirring at 700 rpm. Amount of acetone added, intermittent timeline of acetone addition, and pH of solution were considered as process parameters to be optimized. The effect of the process parameters on size of the nanoparticles was studied. The results indicated that the size control of BSA nanoparticles was achieved by adding acetone intermittently. The standard deviation of average size of BSA nanoparticles at each preparation condition was minimized by adding acetone intermittently. The intermittent addition in polymeric aqueous solution can be useful for size control for food or drug applications.  


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 589
Author(s):  
Sivagowri Shanmugaratnam ◽  
Balaranjan Selvaratnam ◽  
Aravind Baride ◽  
Ranjit Koodali ◽  
Punniamoorthy Ravirajan ◽  
...  

Earth–abundant transition metal chalcogenide materials are of great research interest for energy production and environmental remediation, as they exhibit better photocatalytic activity due to their suitable electronic and optical properties. This study focuses on the photocatalytic activity of flower-like SnS2 nanoparticles (composed of nanosheet subunits) embedded in TiO2 synthesized by a facile hydrothermal method. The materials were characterized using different techniques, and their photocatalytic activity was assessed for hydrogen evolution reaction and the degradation of methylene blue. Among the catalysts studied, 10 wt. % of SnS2 loaded TiO2 nanocomposite shows an optimum hydrogen evolution rate of 195.55 µmolg−1, whereas 15 wt. % loading of SnS2 on TiO2 exhibits better performance against the degradation of methylene blue (MB) with the rate constant of 4.415 × 10−4 s−1 under solar simulated irradiation. The improved performance of these materials can be attributed to the effective photo-induced charge transfer and reduced recombination, which make these nanocomposite materials promising candidates for the development of high-performance next-generation photocatalyst materials. Further, scavenging experiments were carried out to confirm the reactive oxygen species (ROS) involved in the photocatalytic degradation. It can be observed that there was a 78% reduction in the rate of degradation when IPA was used as the scavenger, whereas around 95% reduction was attained while N2 was used as the scavenger. Notably, very low degradation (<5%) was attained when the dye alone was directly under solar irradiation. These results further validate that the •OH radical and the superoxide radicals can be acknowledged for the degradation mechanism of MB, and the enhancement of degradation efficiency may be due to the combined effect of in situ dye sensitization during the catalysis and the impregnation of low bandgap materials on TiO2.


2006 ◽  
Vol 20 (26) ◽  
pp. 1645-1651
Author(s):  
JIAFU CHEN ◽  
YU YE ◽  
QIANWANG CHEN

A novel hexagonal network structure formed by self-assembly of discrete nickel ferrite nanoparticles on a carbon-coated Cu grid is reported. Each hexagon consists of about 22 discrete nanoparticles with sizes from 120 to 250 nm. The side of the regular hexagon contains 4–6 discrete nanoparticles. The sample displays a large coercivity of 622.6 Oe, exhibiting a hard magnetic feature different from those of the corresponding bulk materials, and is closely related to the hexagonal network structure of nickel ferrite nanoparticles.


2011 ◽  
Vol 694 ◽  
pp. 764-768
Author(s):  
Xu Zhang ◽  
Nan Sheng Deng

A novel β-cyclodextrin (β-CD) grafted titanium dioxide (TiO2/β-CD) was synthesized through photo-induced self assembly methods, and its structure was characterized. The TiO2/β-CD hybrid nanomaterial showed high photoactivity under visible light irradiation (λ  400 nm and/or λ  420 nm) and simulated solar irradiation (λ  365 nm). Photodegradation of rhodamine B followed the Langmuir–Hinshelwood kinetics model. The initial rate R0 of rhodamine B degradation increased by 4.6, 2.4 and 1.5 times in the irradiation conditions of λ  420 nm, λ  400 nm and λ  365 nm, respectively. β-CD increased the lifetimes of the excited states of the unreactive guests and facilitated the electron transfer from the excited dye to the TiO2 conduction band, which enhanced the dye pollutant degradation.


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 56583-56589 ◽  
Author(s):  
Yulan Wang ◽  
Dan Wu ◽  
Yong Zhang ◽  
Xiang Ren ◽  
Yaoguang Wang ◽  
...  

In this work, a novel and ultrasensitive label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP).


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Galo Cárdenas-Triviño ◽  
María J. Saludes-Betanzo ◽  
Luis Vergara-González

The nanotechnology is considered as a tool to overcome antibiotic-resistant infections. The aim of this study was to investigate the antibacterial properties of quantum dots (QDs) of Au, Ag, and Cu supported in chitosan against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), and Salmonella Typhi (ATCC 9993) strains. The QDs were synthesized by the method (Chemical Liquid Deposition, CLD) using 2-ethoxyethanol as solvent (1×10−3 M approximate dispersion concentration). Then, NPs supported in chitosan were synthesized by solvated metal atom dispersion (SMAD) in two concentrations, labelled [A] and [B] (0.05 and 0.1 g/L) for each metal with chitosan resulting in an average size of Au 10±2.0, Ag 6±1.3, and Cu 10±2.4 nm, respectively. Several other techniques were performed such as TEM, SEM/EDX, TGA, DSC, and FT-IR for characterizing QDs. The antibacterial assay was performed with 8 agents on cultures of E. coli, S. aureus, and S. Typhi by disk diffusion, broth macrodilution, and determining death curve to the most sensitive pathogen. The antibacterial effect of the nanoparticles was compared using the diameter of growth inhibition zone by agar disk diffusion and through the minimal inhibitory concentration (MIC) and minimal bactericide concentration (MBC) obtained by macrodilution in batch culture with an initial inoculum of 5×105 CFU/mL. The highest bactericidal effect was obtained with nanoparticles of Au, Ag, and Cu (0.1 g/L) with MIC and MBC of 200 and 400 mg/mL, respectively. The greatest bactericidal effect considering the three pathogens turned out to be Ag QDs (0.05 and 0.1 g/L). A bactericidal effect of metal nanoparticles is affected mainly by the electronegativity, the concentration of nanoparticles, and the bacterial age culture.


2018 ◽  
Vol 3 (17) ◽  
pp. 4712-4719 ◽  
Author(s):  
Xueming Liao ◽  
Zhinong Gao ◽  
Yan Xia ◽  
Wenzhong Zhai ◽  
Chenchen Pan ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1109 ◽  
Author(s):  
Sherif Younis ◽  
Ki-Hyun Kim

Heterogeneous photocatalysis is an ecofriendly technique for purifying organic pollutants in environmental systems. While pilot-scale photoreactors have explored photocatalytic system upscalibility, their practical implementation is restricted for various reasons. These include feed composition alteration, complicated photoreactor designs, high operation and synthesis costs, photocatalyst poisoning, low quantum yield under solar irradiation, fast exciton recombination, and low reuse or regeneration capabilities. In this paper, we highlight the photocatalyst scalability challenges for real-world applications. We also provide an in-depth discussion on photocatalyst opportunities for effective air and water pollution control. Lastly, we offer a contemporary perspective on photocatalysis scale-up for the real environmental treatment.


Sign in / Sign up

Export Citation Format

Share Document