scholarly journals Optimization of SPME-GC-MS and Characterization of Floral Scents from Aquilegia Japonica and A. Amurensis Flowers

2020 ◽  
Author(s):  
Hua-Ying Wang ◽  
Wei Zhang ◽  
Jian-Hua Dong ◽  
Hao Wu ◽  
Yuan-Hong Wang ◽  
...  

Abstract The floral scent of plants plays a key role in plant reproduction through the communication between plants and pollinators. Aquilegia as a model species for studying evolution, however, there have been few studies on the floral scents and relationships between floral scents and pollination for Aquilegia taxa. In this study, three types of solid-phase micro-extraction (SPME) fiber coatings (DVB/PDMS, CAR/PDMS, DVB/CAR/PDMS) were evaluated for their performance in extracting volatile organic compounds (VOCs) from flowers of Aquilegia amurensis, which can to contribute to the future studies of elucidating the role of floral scents in the pollination process. In total, 55 VOCs were identified, and among them, 50, 47 and 45 VOCs were extracted by the DVB/CAR/PDMS fiber, CAR/PDMS fiber and DVB/PDMS fibers, respectively. Only 30 VOCs were detected in A. japonica taxa. Furthermore, the relative contents of 8 VOCs were significant different (VIP > 1 and p < 0.05) between the A. amurensis and A. japonica. Therefore, the results can be applied in new studies of the relationships between the chemical composition of floral scents and the processes of attraction of pollinator. It may provide new ideas for rapid evolution and frequent interspecific hybridization of Aquilegia

BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Hua-Ying Wang ◽  
Wei Zhang ◽  
Jian-Hua Dong ◽  
Hao Wu ◽  
Yuan-Hong Wang ◽  
...  

Abstract Background The floral scents of plants play a key role in plant reproduction through the communication between plants and pollinators. Aquilegia as a model species for studying evolution, however, there have been few studies on the floral scents and relationships between floral scents and pollination for Aquilegia taxa. Methods In this study, three types of solid-phase micro-extraction (SPME) fiber coatings (DVB/PDMS, CAR/PDMS, DVB/CAR/PDMS) were evaluated for their performance in extracting volatile organic compounds (VOCs) from flowers of Aquilegia amurensis, which can contribute to the future studies of elucidating the role of floral scents in the pollination process. Results In total, 55 VOCs were identified, and among them, 50, 47 and 45 VOCs were extracted by the DVB/CAR/PDMS fiber, CAR/PDMS fiber and DVB/PDMS fibers, respectively. Only 30 VOCs were detected in A. japonica taxa. Furthermore, the relative contents of 8 VOCs were significant different (VIP > 1 and p < 0.05) between the A. amurensis and A. japonica. Conclusions The results can be applied in new studies of the relationships between the chemical composition of floral scents and the processes of attraction of pollinator. It may provide new ideas for rapid evolution and frequent interspecific hybridization of Aquilegia.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 65
Author(s):  
Danilo Aros ◽  
Macarena Suazo ◽  
Marcela Medel ◽  
Cristina Ubeda

Floral scent plays an important ecological role attracting pollinators. Its composition has been elucidated for a vast diversity of species and is dominated by volatile organic compounds (VOCs) such as monoterpenoids, sesquiterpenoids, phenylpropanoids and benzenoid compounds. Considering that floral scent is also an important character for the ornamental plant market, this study was aimed at characterizing and comparing the molecular composition of scented and non-scented alstroemeria flowers. Confirmation of floral scent was performed through sensorial analysis, while GC-MS analysis detected monoterpenes and esters as major volatile organic compounds (VOCs). A total of 19 and 17 VOCs were detected in the scented hybrids 13M07 and 14E07, respectively. The non-scented hybrid 13B01 shared 14 VOCs with the scented hybrids, although it showed different relative concentrations. Comparison between scented and non-scented hybrids suggests that diversity and amounts of VOCs are likely due to the ecological role of scent, while the human perception of floral scent is not strictly related to the VOC profile.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Yanhang Chen ◽  
Musavvara Kh. Shukurova ◽  
Yonathan Asikin ◽  
Miyako Kusano ◽  
Kazuo N. Watanabe

Curcuma amada Roxb. (Zingiberaceae), commonly known as mango ginger because its rhizome and foliar parts have a similar aroma to mango. The rhizome has been widely used in food industries and alternative medicines to treat a variety of internal diseases such as cough, bronchitis, indigestion, colic, loss of appetite, hiccups, and constipation. The composition of the volatile constituents in a fresh rhizome of C. amada is not reported in detail. The present study aimed to screen and characterize the composition of volatile organic compound (VOC) in a fresh rhizome of three C. amada (ZO45, ZO89, and ZO114) and one C. longa (ZO138) accessions originated from Myanmar. The analysis was carried out by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). As a result, 122 VOCs were tentatively identified from the extracted 373 mass spectra. The following compounds were the ten most highly abundant and broadly present ones: ar-turmerone, α-zingiberene, α-santalene, (E)-γ-atlantone, cuparene, β-bisabolene, teresantalol, β-sesquiphellandrene, trans-α-bergamotene, γ-curcumene. The intensity of ar-turmerone, the sesquiterpene which is mainly characterized in C. longa essential oil (up to 15.5–27.5%), was significantly higher in C. amada accession ZO89 (15.707 ± 5.78a) compared to C. longa accession ZO138 (0.300 ± 0.08b). Cis-α-bergamotene was not detected in two C. amada accessions ZO45 and ZO89. The study revealed between-species variation regarding identified VOCs in the fresh rhizome of C. amada and C. longa.


2018 ◽  
Vol 81 (8) ◽  
pp. 1231-1239 ◽  
Author(s):  
Francisca Aliny Nunes Silva ◽  
Alexander Alves da Silva ◽  
Nayanny de Sousa Fernandes ◽  
Tigressa Helena Soares Rodrigues ◽  
Kirley Marques Canuto ◽  
...  

Author(s):  
Robert J. Nichols ◽  
Benjamin LaFrance ◽  
Naiya R. Phillips ◽  
Luke M. Oltrogge ◽  
Luis E. Valentin-Alvarado ◽  
...  

AbstractProkaryotic nanocompartments, also known as encapsulins, are a recently discovered proteinaceous organelle in prokaryotes that compartmentalize cargo enzymes. While initial studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored. Here, we describe a novel encapsulin in the freshwater cyanobacterium Synechococcus elongatus PCC 7942. This nanocompartment is upregulated upon sulfate starvation and encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryoelectron microscopy, we have determined the structure of the nanocompartment complex to 2.2 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery, structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide a foundation for future studies seeking to understand the physiological role of this encapsulin in various bacteria.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1058 ◽  
Author(s):  
Mariangie Castillo ◽  
Emanuel da Silva ◽  
José S. Câmara ◽  
Mahnaz Khadem

The quality and typical characteristic of wines depends, among other factors, on the volatile organic metabolites (VOMs) that are biosynthesized by yeasts, mainly Saccharomyces cerevisiae species. The yeast strain influences the diversity and proportions of the VOMs produced during the fermentation process, as the genetic predisposition of the strains is a by-product of selective adaptation to the ecosystem. The present work reports the characterization of S. cerevisiae strains isolated from grape must, used in the Demarcated Region of Madeira (DRM) for winemaking. Yeast species were identified by amplification and by restriction fragment length polymorphism (RFLP) analysis of the region 5.8S-internal transcribed spacers (PCR-RFLP of 5.8S-ITS) of ribosomal DNA (rDNA). The strains identification was performed by analyzing the RFLP pattern of mitochondrial DNA (RFLP-mtDNA). The representative strains were selected for the characterization of the volatile profile through headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis. A total of 77 VOMs were identified. Higher alcohols, esters, and fatty acids were the major chemical families representing 63%, 16%, and 9%, respectively, in strain A and 54%, 23%, and 15% in strain B. The results indicate the influence of the strain metabolism in the production of VOMs, many of which probably participate in the aroma of the corresponding wines.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2818 ◽  
Author(s):  
Bettie Obi Johnson ◽  
Annette M. Golonka ◽  
Austin Blackwell ◽  
Iver Vazquez ◽  
Nigel Wolfram

Gelsemium sempervirens (L.) W.T. Aiton, a distylous woody vine of the family Gelsemiaceae, produces sweetly fragrant flowers that are known for the toxic alkaloids they contain. The composition of this plant’s floral scent has not previously been determined. In this study, the scent profiles of 74 flowers obtained from six different wild and cultivated populations of G. sempervirens were measured by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). There were 81 volatile organic compounds identified and characterized as benzenoids, terpenoids, fatty acid derivatives, and yeast associated compounds. The most abundant compound was benzaldehyde (23–80%) followed by ethanol (0.9–17%), benzyl benzoate (2–15%), 4-anisaldehyde (2–11%), (Z)-α-ocimene (0–34%), and α-farnesene (0.1–16%). The impacts of geographic location, population type (wild or cultivated), and style morph (L = long, S = short) on scent profile were investigated. The results showed no relationship between geographic location or population type and volatile organic compounds (VOC) profile, but did show a significant scent profile difference between L and S morphs based on non-metric multidimensional scaling (NMDS) using Bray-Curtis similarity indices. The L morphs contained higher amounts of benzenoids and the S morphs contained higher amounts of terpenoids in their scent profiles. The L morphs also produced a higher total abundance of scent compounds than the S morphs. This study represents the first floral scent determination of G. sempervirens finding significant variation in scent abundance and composition between style morphs.


2021 ◽  
Vol 40 (4) ◽  
pp. 71-84
Author(s):  
Loredana Dragomir ◽  
Mirela Mazilu

Abstract In 2020 and 2021, the entire evolution of human society is under the sign of a paradox, of the adversity of events, coming in avalanche. The tourist evolutions themselves suffer the imprint of the paradox. These paradoxes urgently require new paradigms, the famous ‘paradigm shifts’, mentality, optics, action. The purpose of this research is to outline the main aspects of the research problem and diagnose the situation, with focus on identifying hypotheses for future descriptive or causal research as well as to explore the reasons, attitudes and values of the paradigm and paradox, which differentiate the two notions approached: testing new concepts of forecasting, a product specific to the destination under analysis and in identifying other viable, sustainable alternatives and their analysis in parallel with modelling and promoting new ideas of tourism products or services, respectively improving the existing ones. This article aims to capitalise on the paradox, already successfully applied in economics by the author of the method and in shaping and delimiting ecotourism (in particular the ecotourism from the destination Ţara Haţegului – Retezat), emphasising the role of self-contradiction of the field, through a specific type of economic reasoning, in which the rapid evolution of tourism risks are becoming its own cause of its disappearance, knowing that too much tourism kills tourism. Responsibility and the mesological spirit are the only ways to counteract the paradox phenomenon, even a paradigm in the metamorphosis of ecotourism.


2020 ◽  
Vol 9 (10) ◽  
pp. e5069108880
Author(s):  
Paulo Herbesson Pereira de Sousa ◽  
Cláudia Inês da Silva ◽  
Breno Magalhães Freitas ◽  
Tigressa Helena Rodrigues Soares ◽  
Isac Gabriel Abrahao Bomfim ◽  
...  

This study tested three types of Solid-Phase Microextraction fibers in developing a method to extract volatile organic compounds present in the diet of immature Centris analis. Samples were placed in glass vials with metal lids and added with 3g NaCl and 8 ml deionized water. Extraction and characterization were carried out using a Headspace – Solid Phase Microextraction (HS-SPME) with Gas Chromatography – Mass Spectrometry, and the three types of fibers were polydimethylsiloxane (PDMS), divinylbenzene/ carboxen/ polydimethylsiloxane (DVB/CAR/PDMS) and carboxen/ polydimethylsiloxane (CAR/PDMS). Each type of fiber was exposed to volatiles for 30 min and analyzed in a chromatograph Agilent GC-MS equipped with a quadrupole detector (MSD 5977A), containing a HP-5MS (30 m x 0.25 mm x 0.25 µm) column and Helium as the carrier gas (1 ml.min-1). The CAR / PDMS fiber favored the extraction of volatile compounds to semi-volatile compounds, followed by DVB / CAR / PDMS, while PDMS presented a lower number of extracted compounds, which can be attributed to its apolar nature. The volatile compounds identified in the diet included alcohols, aldehydes, esters, ketones, and terpenes. The SPME technique has proven effective in the extraction of volatile organic compounds from immature of Centris analis diet, being the CAR/PDMS the most suitable fiber for this.


Sign in / Sign up

Export Citation Format

Share Document