Research on Deep-hole Drilling Quality of High-strength Steel With Slender Gun Drill

Author(s):  
Jiabin Liang ◽  
Li Jiao ◽  
Pei Yan ◽  
Minghui Cheng ◽  
Tianyang Qiu ◽  
...  

Abstract There are a lot of problems exist in the processing of long and thin deep hole gun drilling of high strength steel, such as insufficient of the machining mechanism and characteristics of gun drilling, difficulty in selecting machining parameters, unknown influence mechanism of machining parameters on drilling force, drilling temperature and machining quality. In this paper, 42CrMo high strength steel is selected as the workpiece material. A numerical model of cutting force is established based on the mechanism of gun drill, and then the finite element simulation and processing test are carried out. The results show that the cutting force decreases with the increase of cutting speed, and increases with the increase of feed speed; the error between the theoretical and actual value is less than 10%. Cutting speed and feed speed have a great influence on machining quality, and the cutting fluid pressure mainly affects the surface roughness.

2017 ◽  
Vol 748 ◽  
pp. 224-228 ◽  
Author(s):  
Bao Liang Xing ◽  
Jing Wang ◽  
Hui Ying Cao ◽  
Shu Zhong Zhang ◽  
Wei Wei ◽  
...  

Based on the experiment of turning aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in turning aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed, increased with the increase of cutting depth and insignificant with the increase of feed speed. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that cutting speed and cutting depth have remarkable influence to fractal dimension Dx, Dy and Dz.


2017 ◽  
Vol 748 ◽  
pp. 212-217 ◽  
Author(s):  
Zheng Mei Zhang ◽  
Bao Liang Xing ◽  
Jing Wang ◽  
Hui Ying Cao ◽  
Shao Hua Li

Based on the experiment of milling aluminium alloy (7075-T651), the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in milling aluminium alloy operation are measured and the fractal dimension are calculated using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed and increased with the increase of feed speed and cutting depth. The mathematic models of fractal dimension of cutting force are developed using response surface methodology (RSM). The results of the ANOVA show that feed speed and cutting depth have remarkable influence to fractal dimension Dx and Dy, cutting speed and feed speed for Dz.


2013 ◽  
Vol 652-654 ◽  
pp. 2191-2195 ◽  
Author(s):  
Zheng Mei Zhang ◽  
Hai Wen Xiao ◽  
Gui Zhen Wang ◽  
Shu Zhong Zhang ◽  
Shu Qin Zhang

Based on experiment of sawing Wulian red granite with diamond circular saw, the relations between the cutting force with machining parameters are studied. Cutting speed, feed rate and cutting depth are considered as the process parameters. The cutting force in sawing granite operation are measured and the experimental results are then analyzed using response surface methodology. From the analysis, it is seen that the cutting force Fx , Fy and Fz are reduced with the increase of cutting speed and increased with the increase of feed rate and cutting depth, and the mathematical models of the cutting force are developed. By ANOVA for the cutting force models, It is concluded that the models are significant at 95% confidence level and the significant effects are the first-order of cutting speed, feed speed, cutting depth and the quadratic of cutting depth.


2011 ◽  
Vol 328-330 ◽  
pp. 470-473 ◽  
Author(s):  
Shu Juan Li ◽  
Yong Ke Hu ◽  
Xue Jiang ◽  
Juan Du

As a modern manufacturing technology, cryogenic cutting technology is one of effective ways to improve machining efficiency of hard-cutting materials.With typical hard-cutting materials 35CrMnSiA and 45CrNiMoV high-strength steel as the research object, the comparison experiment between cryogenic cutting and dry cutting of two kinds of high-strength steels was made in this paper. In the changing cutting speed conditions, the cutting force and the surface roughness of two kinds of cutting were measured in this experiment.By changing the length of cutting stroke, the cutter wear of two kinds of cutting was measured, and a comparison of chip-breaking effects was made in the experiment.The experimental results indicate that the cutting force, surface roughness, and tool wear in cutting 35CrMnSiA and 45CrNiMoV high-strength steel under cryogenic condition are reduced, and chip-breaking effect of cryogenic cutting is improved. This may be attributed mainly to improve the machinability of higth-strength steel.


2013 ◽  
Vol 797 ◽  
pp. 214-219
Author(s):  
Jin Sheng Zhang ◽  
Zheng Mei Zhang ◽  
Ming Wei Ding ◽  
Huai Chao Wang ◽  
Zhi Wang

Based on orthogonal experiment of machining the irregular surface of Wulian red granite (G3768) with diamond profiling wheel, the relations between the fractal dimensions of cutting forces with machining parameters are studied. Cutting speed, feed speed and cutting depth are considered as the process parameters. The cutting force in machining granite operation are measured and the fractal dimension are calculated using using the algorithm of correlation dimension. From main effect plots the fractal dimensions of three directions of cutting forces are reduced with the increase of cutting speed and increased with the increase of feed speed and cutting depth. The mathematic models of fractal dimension of cutting force are developed by analysis of regression. The results of the ANOVA show that cutting speed and feed speed have remarkable influence to fractal dimensionDx,DyandDz.


2011 ◽  
Vol 148-149 ◽  
pp. 374-379
Author(s):  
Long Bai ◽  
Tao Wang ◽  
Xi Bin Wang ◽  
Jian Jun Chen

The present paper demonstrates a study of the impact of cutting condition on turning high strength steel 34CrNiMo6. Based on Taguchi method, a plan of experiments was performed with ceramic cutting insert. The first and second cutting force equations are developed through the response surface methodology (RSM) to investigate the effect of input cutting parameters (cutting speed, feed rate and depth) on cutting force. In term of input parameters, the cutting force contours are showed and the analysis of the predicted models is performed with aid of the statistical software package. In addition, the separate influence of individual cutting parameter and the interaction between these factors are also discussed in this study. In general, the results obtained from the mathematical model agree well with the experimental data.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Author(s):  
N. G. Patil ◽  
P. K. Brahmankar ◽  
L. G. Navale

Non-traditional process like wire electro-discharge machining (WEDM) is found to show a promise for machining metal matrix composites (MMCs). However, the machining information for the difficult-to-machine particle-reinforced material is inadequate. This paper is focused on experimental investigation to examine the effect of electrical as well as nonelectrical machining parameters on performance in wire electro-discharge machining of metal matrix composites (Al/Al2O3p). Taguchi orthogonal array was used to study the effect of combination of reinforcement, current, pulse on-time, off-time, servo reference voltage, maximum feed speed, wire speed, flushing pressure and wire tension on kerf width and cutting speed. Reinforcement percentage, current, on-time was found to have significant effect on cutting rate and kerf width. The optimum machining parameter combinations were obtained for cutting speed and kerf width separately.


2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Abdul Fattah Mohamad Tahir ◽  
Ahmad Razelan Rashid

Development of new material known as Ultra High Strength Steel (UHSS) able to improve the vehicle mass thus reflecting better fuel consumption. Transformation into high strength steel has been a significant drawback in trimming the UHSS into its final shape thus laser cutting process appeared to be the solution. This study emphasizes the relationship between Carbon Dioxide (CO2) laser cutting input parameters on 22MnB5 boron steel focusing on the kerf width formation and Heat Affected Zone (HAZ). Experimental research with variation of laser power, cutting speed and assisted gas pressure were executed to evaluate the responses. Metrological and metallographic evaluation of the responses were made on the outputs that are the kerf width formation and HAZ.  Positive correlation for power and negative interaction for cutting speed were found as the major factors on formation of the kerf. For the HAZ formation, thicker HAZ were formed as bigger laser power were applied to the material. Cutting speed and gas pressure does not greatly influence the HAZ formation for 22MnB5 boron steel.


Sign in / Sign up

Export Citation Format

Share Document