scholarly journals Radar Signals Modulation Recognition Based on Bispectrum Feature Processing

Author(s):  
xinping mi ◽  
xihong Chen ◽  
yufei Cao ◽  
qiang liu ◽  
xincheng song

Abstract Modulation recognition of radar signals is an important part of modern electronic intelligence reconnaissance and electronic support systems. In this paper, to solve the problem of low recognition accuracy and low noise resistance of radar signals under low signal-to-noise ratio(SNR), a recognition method based on variational mode decomposition(VMD) and bispectrum feature extraction is proposed. Based on the feature that bispectrum can suppress Gaussian noise, the feasibility of signals modulation recognition under low SNR is analyzed and the noise item is introduced. Due to the interference of noise item, the noise suppression effect of bispectrum is worse under 0dB. An improved VMD algorithm based on artificial bee colony(ABC) algorithm optimization and envelope entropy evaluation is proposed to preprocess the signal to improve the SNR. Finally, we designed a convolution neural network(CNN) classifier to recognize signals of different modulation types. The simulation results show that this method has better noise resistance than traditional methods, and can effectively identify different types of signals under low SNR.

2020 ◽  
Vol 222 (3) ◽  
pp. 1480-1501
Author(s):  
Ross C Caton ◽  
Gary L Pavlis ◽  
David J Thomson ◽  
Frank L Vernon

SUMMARY We describe array methods to search for low signal-to-noise ratio (SNR) signals in long-period seismic data using Fourier analysis. This is motivated by published results that find evidence of solar free oscillations in the Earth's seismic hum. Previous work used data from only one station. In this paper, we describe methods for computing spectra from array data. Arrays reduce noise level through averaging and provide redundancy that we use to distinguish coherent signal from a random background. We describe two algorithms for calculating a robust spectrum from seismic arrays, an algorithm that automatically removes impulsive transient signals from data, a jackknife method for estimating the variance of the spectrum, and a method for assessing the significance of an entire spectral band. We show examples of their application to data recorded by the Homestake Mine 3-D array in Lead, SD and the Piñon Flats PY array. These are two of the quietest small aperture arrays ever deployed in North America. The underground Homestake data has exceptionally low noise, and the borehole sensors of the PY array also have very low noise, making these arrays well suited to finding very weak signals. We find that our methods remove transient signals effectively from the data so that even low-SNR signals in the seismic background can be found and tested. Additionally, we find that the jackknife variance estimate is comparable to the noise floor, and we present initial evidence for solar g-modes in our data through the T2 test, a multivariate generalization of Student's t-test.


2014 ◽  
Vol 701-702 ◽  
pp. 442-448
Author(s):  
Xiang Ke Guo ◽  
Rong Ke Liu ◽  
Chang Yun Liu ◽  
Shao Hua Yue

To improve the accuracy and reliability of modulation recognition at low signal to noise ratio (SNR) and few knowledge of signal parameter, the novel method based on the cyclic spectral feature and support vector machine(SVM) is presented. In the process of novel algorithms, the cyclic spectral analysis is used to realize the feature extract of the modulated signals, and the Eigenface method is used to reduce the amount of spectral coherence feature. Then, a new scheme of classification based on support vector machine is presented to classify the modulation signal. The experiment shows that the modulation classification accuracy of presented method is significantly improved at low SNR environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ji Li ◽  
Huiqiang Zhang ◽  
Jianping Ou ◽  
Wei Wang

In the increasingly complex electromagnetic environment of modern battlefields, how to quickly and accurately identify radar signals is a hotspot in the field of electronic countermeasures. In this paper, USRP N210, USRP-LW N210, and other general software radio peripherals are used to simulate the transmitting and receiving process of radar signals, and a total of 8 radar signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and OFDM, are produced. The signal obtains time-frequency images (TFIs) through the Choi–Williams distribution function (CWD). According to the characteristics of the radar signal TFI, a global feature balance extraction module (GFBE) is designed. Then, a new IIF-Net convolutional neural network with fewer network parameters and less computation cost has been proposed. The signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. The experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition rate and better robustness under low SNR.


2011 ◽  
Vol 36 (3) ◽  
pp. 519-532 ◽  
Author(s):  
Zhi Tao ◽  
He-Ming Zhao ◽  
Xiao-Jun Zhang ◽  
Di Wu

Abstract This paper proposes a speech enhancement method using the multi-scales and multi-thresholds of the auditory perception wavelet transform, which is suitable for a low SNR (signal to noise ratio) environment. This method achieves the goal of noise reduction according to the threshold processing of the human ear's auditory masking effect on the auditory perception wavelet transform parameters of a speech signal. At the same time, in order to prevent high frequency loss during the process of noise suppression, we first make a voicing decision based on the speech signals. Afterwards, we process the unvoiced sound segment and the voiced sound segment according to the different thresholds and different judgments. Lastly, we perform objective and subjective tests on the enhanced speech. The results show that, compared to other spectral subtractions, our method keeps the components of unvoiced sound intact, while it suppresses the residual noise and the background noise. Thus, the enhanced speech has better clarity and intelligibility.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7474
Author(s):  
Yongjiang Mao ◽  
Wenjuan Ren ◽  
Zhanpeng Yang

With the development of signal processing technology and the use of new radar systems, signal aliasing and electronic interference have occurred in space. The electromagnetic signals have become extremely complicated in their current applications in space, causing difficult problems in terms of accurately identifying radar-modulated signals in low signal-to-noise ratio (SNR) environments. To address this problem, in this paper, we propose an intelligent recognition method that combines time–frequency (T–F) analysis and a deep neural network to identify radar modulation signals. The T–F analysis of the complex Morlet wavelet transform (CMWT) method is used to extract the characteristics of signals and obtain the T–F images. Adaptive filtering and morphological processing are used in T–F image enhancement to reduce the interference of noise on signal characteristics. A deep neural network with the channel-separable ResNet (Sep-ResNet) is used to classify enhanced T–F images. The proposed method completes high-accuracy intelligent recognition of radar-modulated signals in a low-SNR environment. When the SNR is −10 dB, the probability of successful recognition (PSR) is 93.44%.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 526 ◽  
Author(s):  
Zhiyuan Ma ◽  
Zhi Huang ◽  
Anni Lin ◽  
Guangming Huang

Detecting and classifying the modulation type of the intercepted noisy LPI (low probability of intercept) radar signals in real-time is a necessary survival technique in the electronic intelligence systems. Most radar signals have been designed to have LPI properties; therefore, the LPI radar waveform recognition technique (LWRT) has recently gained increasing attention. In this paper, we propose a multiple feature images joint decision (MFIJD) model with two different feature extraction structures that fully extract the pixel feature to obtain the pre-classification results of each feature image for the non-stationary characteristics of most LPI radar signals. The core technology of this model is combining the short-time autocorrelation feature image, double short-time autocorrelation feature image and the original signal time-frequency image (TFI) simultaneously input into the hybrid model classifier, which is suitable for non-stationary signals, and it has higher universality. We demonstrate the performance of MFIJD by simulating 11 types of the signals defined in this paper and generating training sets and test sets. The comparison with the literature shows that the proposed methods not only has a high universality for LPI radar signals, but also better adapts to LPI radar waveform recognition at low SNR (signal to noise ratio) environment. The overall recognition rate of the method reaches 87.7% when the SNR is −6 dB.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Runlan Tian ◽  
Guoyi Zhang ◽  
Rui Zhou ◽  
Wei Dong

A novel effective detection method is proposed for electronic intelligence (ELINT) systems detecting polyphase codes radar signal in the low signal-to-noise ratio (SNR) scenario. The core idea of the proposed method is first to calculate the time-frequency distribution of polyphase codes radar signals via Wigner-Ville distribution (WVD); then the modified Hough transform (HT) is employed to cumulate all the energy of WVD’s ridges effectively to achieve signal detection. Compared with the generalised Wigner Hough transform (GWHT) method, the proposed method has a superior performance in low SNR and is not sensitive to the code type. Simulation results verify the validity of the proposed method.


Author(s):  
CHAITANYA BETHINA ◽  
M. PREMKUMAR

A modified decision based unsymmetrical trimmed median filter algorithm for the restoration of gray scale, and color images that are highly corrupted by salt and pepper noise is proposed in this paper. Images are often corrupted by impulse noise during acquisition and transmission; thus, an efficient noise suppression technique is required before subsequent image processing operations. Median filter (MF) is widely used in noise removal methods due to its denoising capability and computational efficiency. However, it is effective only for low noise densities. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than denoising techniques. Especially, the proposed method can preserve edges very well while removing salt and pepper noise. Modified Decision Based Algorithm (MDBA), and Progressive Switched Median Filter (PSMF) shows better results at low and medium noise densities. At high noise densities, their performance is poor. A new algorithm to remove high-density salt and pepper noise using modified Decision Based Unsymmetric Trimmed Median Filter (DBUTMF) is proposed. The proposed algorithm replaces the noisy pixel by trimmed median. Since our algorithm is algorithmically simple, it is very suitable to be applied to many real-time applications and higher noise densities. When all the pixel values are 0’s and 255’s then the noise pixel is replaced by mean value of all the elements present in the selected window. The proposed algorithm is tested against different grayscale and color images and it gives better Peak Signal-to-Noise Ratio (PSNR) and Image Enhancement Factor (IEF).


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


Sign in / Sign up

Export Citation Format

Share Document