Regulation of Autoreactive CD4 T Cells by FoxO1 Signaling in CNS Autoimmunity

Author(s):  
Emma E. Kraus ◽  
Laura Kakuk-Atkins ◽  
Marissa F. Farinas ◽  
Mathew Jeffers ◽  
Amy E. Lovett-Racke ◽  
...  

Abstract BackgroundMyelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is still unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. MethodsUsing a selective FoxO1 inhibitor AS1842856, we determined the effects of FoxO1 inhibition in regulating myelin-specific Th1 and Th17 cells, and the transcriptional balance of T-bet and Foxp3 in myelin-specific CD4 T cells from EAE mice. The effects of AS1842856 in regulating the encephalitogenicity of myelin-specific T cells and the expansion of human Th1 cells from MS patients were also characterized. Furthermore, we characterized the potential role of FoxO1 in mediating PD-1 signaling in CD4 T cells, critical for regulating Teff and Treg cells. ResultsInhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. Moreover, the transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from mice with EAE. When FoxO1 was inhibited in myelin-specific CD4 T cells, the transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies compared to control-treated cells. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, the immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition, consistent with a bias toward Treg induction. ConclusionsThese data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 352-352 ◽  
Author(s):  
Miriam E. Mossoba ◽  
Jacopo Mariotti ◽  
Xiao-Yi Yan ◽  
Anu Gangopadhyay ◽  
Mathew Winterton ◽  
...  

Abstract Abstract 352 Ex-vivo expansion of murine donor CD4+ T cells using co-stimulation, IL-4, and rapamycin generated a T cell population (T-rapa cells) that beneficially modulated GVHD, graft rejection, and GVT effects. We thus conducted a clinical trial to evaluate T-rapa cell infusion after HLA-matched sibling allogeneic HCT. In one trial arm, T-rapa cell infusion (2.5 × 107 cells/kg; d 14 post-HCT) safely accelerated alloengraftment after low-intensity host conditioning, as evidenced by: conversion of mixed chimerism to predominant donor chimerism in the majority of patients by d 100 post-HCT and a low rate of grade II to IV acute GVHD (10%; 4/40 cases). This abstract characterizes the T-rapa clinical products (n=48), particularly with respect to the balance of Th1, Th2, and Treg cells and the magnitude of effector function (cytokine secretion); this latter aspect is relevant because in animal models, T cells of limited differentiation mediate increased in vivo effects upon adoptive transfer. Transplant donors underwent steady-state leukapheresis. CD4+ T cells were then purified (Miltenyi.. CliniMACS) and expanded in Lifecell.. bags for 12 days using co-stimulation (anti-CD3, anti-CD28 coated magnetic beads) and media containing rhIL-2, rhIL-4, and rapamycin. T-rapa products contained minimal cells of naive phenotype (CD45RA+ cells: 2 ± 0.4%) and were comprised of both central memory cells (CCR7+: 28 ± 2%) and effector memory cells (CCR7−: 67 ± 2%). Phenotyping assays were performed on T-rapa clinical products at d 12 of culture (time of cell product infusion); in addition, to assess phenotype stability, assays were performed after an additional 6 days of culture after co-stimulation without IL-4 and rapamycin (“day 18”). For comparison, four separate CD4+ T cell culture conditions were established from each of n=8 normal donors. For these control cultures, CD4+ T cells were co-stimulated and propagated for 12 days in tissue culture flasks using: (1) IL-2, IL-4 (“Th2”); (2) IL-2, IL-4 plus rapamycin (“T-rapa”); (3) IL-2, IFN-a (“Th1”); and (4) IL-2, IFN-a plus rapamycin (“Th1-rapa”). Phenotyping results are shown in Fig. 1. In the four flask cultures, there was modest skewing of the Th2/Th1 balance, as indicated by relatively comparable expression of the Th2 transcription factor GATA-3 and the Th1 transcription factor T-bet by intra-cellular flow cytometry (Fig. 1A). In marked contrast, day 12 T-rapa clinical products expressed a highly polarized Th2/Th1 balance (GATA-3/T-bet ratio of 28 ± 9 [mean ± SEM]); this Th2/Th1 balance was relatively stable after additional culture without IL-4 and rapamycin (“Day 18”). The median frequency of transcription factor expression was 11.5% for GATA-3 (range: 3–37%), 5.1% for T-bet (range: 0–18%), and < 1% expression of the Treg transcription factor FoxP3 (range: 0–0.7%). T-rapa clinical products were evaluated for cytokine secretion in response to co-stimulation at day 12 and day 18 of culture; supernatants were tested for Th2 cytokines (Fig. 1B) and Th1/Th17 cytokines (Fig. 1C). Day 12 T-rapa clinical products secreted each Th2 cytokine measured. The magnitude (pg/ml) of T-rapa cell Th2 cytokine secretion was approximately 2-log reduced relative to control Th2 cells; day 18 T-rapa cell secretion of Th2 cytokines was increased relative to day 12 values, but still reduced relative to control Th2 cells. Day 12 T-rapa clinical products did not secrete IL-17 and secreted low levels of IFN-g, IL-2, and TNF-a (1-3 log reduced relative to Th1 control cells). Day 18 T-rapa cell secretion of IFN-g and TNF-a was increased relative to day 12 values, but still reduced relative to control Th1 cells. Remarkably, day 18 T-rapa cell secretion of IL-2 was greatly diminished relative to day 12 values, and IL-17 secretion remained at minimal levels. In conclusion, T-rapa cell clinical products are comprised of a balance of Th2 and Th1 effector CD4+ T cells, with minimal contamination from Treg or Th17 cells. The T-rapa cell clinical products possessed limited differentiation plasticity and secreted low levels of Th2 and Th1 cytokines. Adoptive transfer of a balance of minimally differentiated and fixed polarity donor Th2/Th1 cells represents a novel approach to safely accelerate alloengraftment after low-intensity conditioning. Disclosures: No relevant conflicts of interest to declare.


Medicine ◽  
2017 ◽  
Vol 96 (17) ◽  
pp. e6615 ◽  
Author(s):  
Xingxing Liu ◽  
Hui Hu ◽  
Heng Fan ◽  
Dongmei Zuo ◽  
Zhexing Shou ◽  
...  
Keyword(s):  
T Cells ◽  

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Dan Ye ◽  
Yun Xu

Both resident microglia and infiltrated peripheral T cells have been proved to play important roles in the pathology of stroke. It is well accepted that activated microglia exert dual roles, including pro-inflammatory (M1) and anti-inflammatory (M2) functions. However, the mechanism regulating microglial polarization remains elusive. T cells are recruited into the ischemic area within 24 h after stroke, which also exhibit pro-inflammatory (Th1, Th17) and anti-inflammatory (Th2, Treg) functions. The interaction between microglia and T cells after stroke is barely understood, which may be served as modifiers of pathobiology in stroke. Here we described the role of T cells in the microglial polarization in mouse experimental stroke. We isolated T cells from spleens of MCAO mice at 24 h and 72 h, respectively, and then added to cultured microglia for 24 h. Our results indicated that splenic T cells obtained at 24 h after MCAO selectively promoted microglia polarize to a pro-inflammatory (M1) state, while T cells obtained at 72 h, favored microglia polarize to an anti-inflammatory (M2) state. The results of flow cytometry showed that Th1 and Th17 cells increased at 24 h after MCAO while Th2 and Treg cells increased at 72 h after MCAO. This study implicates that distinct subtypes of T cells contribute differentially to microglial polarization after stroke onset. Therefore, treatments aiming at modulating the ratios of T cells to anti-inflammatory cells have the potential to induce microglial polarize to M2 phenotype and improve the outcome of ischemic stroke.


2019 ◽  
Vol 116 (43) ◽  
pp. 21666-21672 ◽  
Author(s):  
Wen-Yi Tseng ◽  
Yi-Shu Huang ◽  
Felix Clanchy ◽  
Kay McNamee ◽  
Dany Perocheau ◽  
...  

Regulatory T (Treg) cells expressing the transcription factor Foxp3 play an important role in maintaining immune homeostasis. Chronic inflammation is associated with reduced Foxp3 expression, function, and loss of phenotypic stability. Previous studies have established the importance of TNF receptor 2 (TNFR2) in the generation and/or activation of Treg cells. In this study, we assess the importance of TNFR2 in healthy mice and under inflammatory conditions. Our findings reveal that, in health, TNFR2 is important not only for the generation of Treg cells, but also for regulating their functional activity. We also show that TNFR2 maintains Foxp3 expression in Treg cells by restricting DNA methylation at the Foxp3 promoter. In inflammation, loss of TNFR2 results in increased severity and chronicity of experimental arthritis, reduced total numbers of Treg cells, reduced accumulation of Treg cells in inflamed joints, and loss of inhibitory activity. In addition, we demonstrate that, under inflammatory conditions, loss of TNFR2 causes Treg cells to adopt a proinflammatory Th17-like phenotype. It was concluded that TNFR2 signaling is required to enable Treg cells to promote resolution of inflammation and prevent them from undergoing dedifferentiation. Consequently, TNFR2-specific agonists or TNF1-specific antagonists may be useful in the treatment of autoimmune disease.


2019 ◽  
Vol 14 (4) ◽  
pp. 508-524 ◽  
Author(s):  
Heike Schmitt ◽  
Julia Ulmschneider ◽  
Ulrike Billmeier ◽  
Michael Vieth ◽  
Patrizio Scarozza ◽  
...  

Abstract Background and Aims The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. Methods Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. Results Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. Conclusion Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. Podcast This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2698-2698
Author(s):  
Elena E. Solomou ◽  
A. Tsanaktsi ◽  
V. Fertakis ◽  
K. Dallas ◽  
S. Karambina ◽  
...  

Abstract IL17-producing T cells have been recently described as a distinct T cell helper population (Th17 cells) characterized by expression of membrane CD4 and IL23R and intracellular expression of the orphan nuclear receptor RORgt. In Th17 cells the transcription factor RORgt induces the transcription of IL17 gene, whereas in Th1 cells the transcription factor Tbet is responsible for the transcription of IFNg gene. Th1 along with Th17 cells are thought to contribute to the pathogenesis of autoimmune diseases. In murine models Th17 cells are fully polarized. In humans a proportion of Th17 cells are also positive for interferon gamma (IFN-g); they are named Th1/17 cells and their function is yet unclear. In patients with colitis and seronegative arthritis Th17 cells are increased. The induction of Th17 and Th1/17 in patients with MDS has not been previously evaluated. To examine the expression of Th17 and Th1/17 cells in this disease, peripheral blood mononuclear cells (PBMC) from patients with MDS were cultured in vitro for 6 days in RPMI-1640, 15% FBS supplemented with PHA (0.1 μg/mL) and IL-2 (10 ng/mL). Percentages of CD4+IL23R+IL-17+ T cells (Th17) and CD4+IL23R+IL17+IFN-g+ T cells (Th1/17) in patients with MDS were determined by flow cytometry: Th17 cells were markedly increased in patients (n=30) compared to healthy controls (n=15), (17.5% ± 3.4 vs 2.5% ± 0.4, p=0.008). Th1/Th17 cells were also significantly increased in MDS patients compared to controls (15.17% ± 2.80 vs 2.56% ± 0.80, p=0.008). None of the patients had been on immunosuppressive treatment or transfused before sampling. In multi-transfused patients with no underlying hematologic disease examined (n=3) the Th17 and Th1/17 populations were comparable to those of healthy donors. In patients with MDS the majority of the Th17 cells expressed also IFNg (90.07% ± 2.87) whereas in healthy controls only 59.7% ± 5.5 of the Th17 cells were also positive for IFNg (p<0.0001). There were no differences between different subtypes of MDS (RA, RARS, and RAEB). Using confocal microscopy, purified CD4+ T cells from PBMC cultures from patients (n=5) showed increased Tbet and RORgt expression at the single-cell level compared to controls (n=3),(T-bet: 22.03 ± 1.20 vs 11.60 ± 0.35 arbitrary units respectively, p<0.0001 and RORãt: 28.90 ± 0.35 vs 21.03 ± 1.20 arbitrary units, p=0.0008. For each sample 100 cells were analyzed). We next asked whether kinases involved in the induction of Tbet are also involved in the induction of RORgt. We analyzed the effects of rottlerin, a PKC-theta inhibitor, SB203580, a p38 MAPK pathway inhibitor, and PD98059, an ERK pathway inhibitor, on Th17 and Th1/17 cell induction in patients (n=7) and controls (n=4). Rottlerin decreased the Th17 content in patients and controls by 45.0%, and the Th1/17 content by 64.8%. SB203580 showed a 17% and 18% decrease on Th17 and on Th1/17 content, respectively, in patients and controls. PD98059 showed no effect on Th17 and Th1/17 populations in patients and controls. By immunoblots, in normal CD4+T cells rottlerin decreased both T-bet and RORgt protein levels by 50% and 20%, respectively. SB203580, decreased RORgt levels by 25%, and PD98059 did not obviously decrease Tbet but decreased RORgt levels by 20%. CD4+IL23R+IL-17+ T cells and CD4+IL23R+IL17+IFN-g+ T cells are increased in most patients with MDS. T cells have recently been implicated in MDS pathogenesis. Although more studies are needed in order to define the role of Th17 and Th1/17 cells in the pathogenesis of MDS, our in vitro data with the kinase inhibitors may suggest a probable therapeutic target for patients with MDS.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1340-1340 ◽  
Author(s):  
Shahram Y Kordasti ◽  
Judith C. W. Marsh ◽  
Sufyan Al-Khan ◽  
Jie Jiang ◽  
Alexander E Smith ◽  
...  

Abstract Abstract 1340 We have examined the role of CD4+ T-cells in the pathogenesis of AA in 63 patients, 48 of whom were analyzed at diagnosis and 15 following immunosuppressive therapy (IST). Absolute numbers of CD4+ regulatory T cells (Tregs, defined as CD3+CD4+CD25highCD27+Foxp3+) were lower in pre-treatment AA patients compared to 10 healthy donors (HDs) (5.5 × 106 v 1.4 × 107)(p=0.01). In patients with severe (SAA) and very severe AA (VSAA), the absolute number and frequency of Tregs were lower than non-severe AA (NSAA) (4.4 × 106/L v 1 × 107/L)(p=0.01) and HDs (4.4 × 106/L v 3 × 107/L) (p<0.001). Absolute numbers of Th1 and Th2 cells in all pre-treatment patients were higher compared to HDs (6.4 × 107/L v 1.8 × 107/L)(p=0.03) for Th1 and (2.6 × 107/L v 2.4 × 106/L)(p=0.006) Th2 cells. Although mean percentages of AA Th17 cells were higher than in HDs (1.5% v 0.15%)(p=0.04), differences in absolute numbers were not significant. Absolute numbers of Th2 and Th17 cells were increased in SAA (1.3 × 107/L v 7.4 × 106/L for Th2)(p=0.01) compared to NSAA (5.7 × 106/L v 2.15 × 106/L for Th17)(p=0.02). Ratios of Th1/Tregs (p=0.003), Th2/Tregs (p=0.02), and Th17/Tregs (p=0.001) were higher in SAA and VSAA compared to NSAA. Percentage of both activated (CD4+CD45RA−CD25highFoxp3high) and resting (CD4+CD45RA+ CD25highFoxp3low) Tregs was decreased in AA patients, compared to HDs (p=0.004 and p=0.01), whereas cytokine secreting Tregs (CD4+CD45RA−CD25high Foxp3low) were increased in AA (p<0.003). Sorted Tregs from AA patients did not suppress cytokine secretion by autologous or HD T effectors (Te) cells in 1:1 co-cultures, whereas IL-2 and IFN-γ secretion by AA Te (CD4+CD25lowCD127high) was suppressible by allogeneic Tregs from HDs, confirming Tregs dysfunction. AA Tregs did not inhibit either CD154 or CD69 expression on Te cells. Tregs from AA patients secreted significantly more IFN-γ, TNF-α and IL-17 (p=0.02, p=0.02 and p=0.01, respectively) after 4 hours stimulation with PMA/Ionomycine compared to HDs. Expression levels of FoxP3, ROR□c and T-bet in AA Tregs was normal. IFN-γ secreting cells (Th1) were enriched using enrichment kit then further enriched by FACS sorting. CDR3 region products of TCR Vβ-chain were amplified using Vβ specific forward and Cβ reverse primers. CDR3 PCR products from AA patients and HDs were subjected 454 sequencing (Roche GS FLX titanium). Sequencing was performed to yield an average ‘depth’ in excess of 1000 clonally reads (1000x) for each sample specific CDR3 PCR amp icon. Reads were processed using Roche Amp icon Variant Analyzer software (AVA). Diversity of TCR receptors (measured by spectratyping and confirmed by high throughput deep sequencing) in AA Th1 cells was lower than HDs (p=0.037), as shown by the percentage and number of consensus clusters in total sequence reads. Interestingly, percentages of the most dominant CDR3 clones, revealed by high throughput sequencing, were higher in AA compared to HDs, regardless of spectratyping pattern. Global gene expression of Tregs was compared in 3 pre-IST AA patients and 5 HDs. A unique gene signature consisting of 86 genes that were significant was identified. There were 8 down regulated genes (fold change) in the pre-treatment group; PIN4 (−4.1), OR2T12 (−3.3), AMAC1 (−2.73), PERP (−2.69), UTS2 (−2.27), RNF139 (−2.13), COMMD9 (−2.09) and LOC100128356 (−2.01). The top 10 of 78 up-regulated genes in the pre-treatment group were HBB (19.5), PSME2 (13.8), CSDA (13.07), FAM127A (7.78), EXOSC1 (7.73), BPGM (7.43), CYSLTR1 (7.17), CHPT1 (6.96) and PLAC8 (6.71). qPCR analysis for CSDA, HBB, PSMiE2, PERP, PIN4, and UTS2 confirmed a similar trend to the microarray results. Interestingly absolute number of Tregs, and Th2/Treg ratio were higher in 10 IST responsive patients compared to 5 non-responsive patients (p=0.005 and 0.02, respectively). We show that expansion of Th1, Th2, Th17, and decreased/skewed Tregs immunophenotype and function are a consistent and defining feature of SAA and VSAA. Clonal expansion of Th1 cells is likely to be antigen driven and the presence of dysfunctional Tregs aggravates this autoimmune response. Increases of Tregs, and Th2/Treg ratios following IST predicts a favourable response to this treatment. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Marie Goepp ◽  
Siobhan Crittenden ◽  
You Zhou ◽  
Adriano G Rossi ◽  
Shuh Narumiya ◽  
...  

Background and Purpose: Regulatory T (Treg) cells are essential for control of inflammatory processes by suppressing Th1 and Th17 cells. The bioactive lipid mediator prostaglandin E2 (PGE2) promotes inflammatory Th1 and Th17 cells and exacerbates T cell-mediated autoimmune diseases. However, the actions of PGE2 on the development and function of Treg cells, particularly under inflammatory conditions, are debated. In this study, we examined whether PGE2 had a direct action on T cells to modulate de novo differentiation of Treg cells. Experimental Approach: We employed an in vitro T cell culture system of TGF-β-dependent Treg induction from naive T cells. PGE2 and selective agonists for its receptors, and other small molecular inhibitors were used. Mice with specific lack of EP4 receptors in T cells were used to assess Treg cell differentiation in vivo. Human peripheral blood T cells from healthy individuals were used to induce differentiation of inducible Treg cells. Key Results: TGF-β-induced Foxp3 expression and Treg cell differentiation in vitro was markedly inhibited by PGE2, which was due to interrupting TGF-β signalling. EP2 or EP4 agonism mimicked suppression of Foxp3 expression in WT T cells, but not in T cells deficient in EP2 or EP4, respectively. Moreover, deficiency of EP4 in T cells impaired iTreg cell differentiation in vivo. PGE2 also appeared to inhibit the conversion of human iTreg cells. Conclusion and Implications: Our results show a direct, negative regulation of iTreg cell differentiation by PGE2, highlighting the potential for selectively targeting the PGE2-EP2/EP4 pathway to control T cell-mediated inflammation.


2021 ◽  
Vol 22 (17) ◽  
pp. 9584
Author(s):  
Yi-Hsing Chen ◽  
Sue Lightman ◽  
Virginia L. Calder

Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these ‘plastic CD4+ T cells’ are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.


Sign in / Sign up

Export Citation Format

Share Document