Controls of plant diversity attributes over above ground biomass in Sal forests of Eastern India

2020 ◽  
Author(s):  
Rahul Kumar ◽  
Amit Kumar ◽  
Purabi Saikia

Abstract Background Above ground biomass (AGB) is a useful measure for assessing changes in forest structure and functional, and play a significant role in studying carbon stocks, the effect of deforestation and carbon sequestration on the global carbon balance. The present study aimed to study the relationship between AGB and community parameters in Sal forests of Eastern India through stratified random sampling by lying 92 belt transects each of 0.5 ha size. Results It recorded a high AGB (410.70 Mg ha-1), and carbon stock (Cp) (193.06 Mg C ha-1), and forest wise AGB ranged from 0.19 to 24.75 Mg ha-1 (mean 4.45 ± 0.45 SE). The spatial pattern of AGB showed that maximum studied forests (65%) had very low AGB (<5.00 Mg ha-1), and only one forests (1%) located in the northwest corner of Ranchi had very high AGB (>20 Mg ha-1). Species wise AGB ranged from 0.001 to 7074.94 Mg ha-1 (mean 106 ± 71 SE) and Shorea robusta with maximum basal area (120.81 m2 ha−1) contributed maximum AGB (64.87% of the total AGB), however, no similar trends have been observed in any other tree species. A significant positive correlation was observed between AGB and Cp (r=1.00, p<0.01), H’ (r= .58, p<0.01), Dmg (r= .31, p<0.01), Dmn (r= .49, p<0.01), ENS (r= .57, p<0.01), E (r= .26, p<0.05), and basal area (r= 0.71, p<0.05). However, a negative correlation of AGB was evident with CD (r= -.57, p<0.01), and density (r= - 0.17). Conclusions The relationships differed greatly among plant diversity attributes, basal area, density, AGB, and Cp within and among various forests and the strongest relationships within each forests were always those having greater richness (Dmg, Dmn), diversity (H, ENS), basal area or evenness (E). Estimation of forest Cp enables us to assess the amount of carbon loss during deforestation or the amount of carbon stored during forest regeneration. The present study will directly help in studying the response of climate change on ecosystem productivity, energy and nutrient flow, and for assessing the patterns of carbon sequestration in Indian forests under global climate change.

2016 ◽  
Vol 8 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Sudam Charan SAHU ◽  
H.S. SURESH ◽  
N.H. RAVINDRANATH

The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB) of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters) were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI) of 40.72, while Combretaceae had the highest family importance value (FIV) of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%), Madhuca indica (7.9%), Mangifera indica (6.9%), Terminalia alata (6.9%) and Diospyros melanoxylon (4.4%), warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks) scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
John T. Hunter

Canonical correspondence analysis and linear regressions were used to relate height, diameter, and dispersion measurements of 36,380 stems from 197 species recorded in 2,341 plots against both climatic and landscape variables. Above ground biomass increased in wetter and cooler locations that ameliorate the seasonal rainfall deficits. Taller and greater diameter trees with lower wood densities occur at higher altitudes. Differences between locations are based on a change in the composition of species rather than a change in the allometric properties within a species. The results support the hydraulic limitation and species packing hypotheses. These interrelationships may be affected by the interactions of fire frequency and drought which are a common feature of much of the study area. Under current climate change scenarios it is likely that there will be a reduction in above ground biomass, the number of stems per hectare, average height, average diameter, and basal area due to increasing seasonality of rainfall, temperatures, and the intensity and frequency of fires. The largest of trees are likely to be removed early due to their inability to cope with increased drought stress. The results suggest a marked reduction in carbon storage will occur across the study region in eastern Australia.


2018 ◽  
Vol 41 (4) ◽  
pp. 397-402
Author(s):  
Tanuja Gahlot ◽  
◽  
Prachi Joshi ◽  
Y.S. Rawat ◽  
◽  
...  

The ability of forests in atmospheric carbon sequestration is increasingly gaining attention. Present study deals with the estimation of biomass and carbon stock of the teak plantation in the terai central forest division in Kumaun, Uttarakhand State of India. Very few scientific studies were done regarding the teak plantation and the estimation of its biomass in Kumaun. Therefore this study was carried out in this region to assess the role played by teak plantation in climate change. The information regarding the changes in pattern of carbon storage is vital and important because it can be used by government and policymakers to predict the deposit pattern for changing climate. Three sites i.e., Kamola block (Site I), Kamola beat (Site II) and East Gadappu beat (Site III) were selected for the study. Large scale variations in biomass and carbon stock were noted among all three sites. Site III (East Gadappu) showed the maximum biomass and carbon stock (297.03 tha-1 and 143.18 tha-1) followed by site I (Kamola block) (241.9 tha -1and 117.27 t ha-1) and site II ( Kamola beat ) (175.76 t ha-1and 85.79 t ha-1). Although stand density and total basal area of the forest showed almost similar value on all three sites, still the differences in biomass and carbon stock at all sites indicated the positive contribution of biodiversity as shown in the results and negative implications of human disturbance to the forest.


2021 ◽  
Vol 4 (4-5) ◽  
pp. 266-276
Author(s):  
Pratap Naikwade

Carbon sequestration is one of the most important and highly recommended measures for mitigating climate change. Soil organic carbon (SOC) has potential to sequester the largest amount of carbon (C) for the longest time period in the midst of the organic C sinks in terrestrial ecosystems of the earth. In recent years, apprehension of the role of soils as sink for carbon on a wide-ranging scale has become dynamic. From last 150 years, encroachment of trees and shrubs into grasslands and the ‘thicketization’ of savannas have been reported and is a global phenomenon. One possibly beneficial effect could be that the shrub and tree-dominated ecosystems will sequester more carbon and will be a buffer for elevated atmospheric carbon dioxide (CO2) levels. The question of what is impact of woody encroachment on soil carbon balance of an ecosystem has proved difficult to answer, and the results remain debatable. The magnitude and pattern of changes in the SOC with woody encroachment are exceedingly abstruse and varies from significant increases, to significant decreases to no net change in SOC. Impact of wood plant encroachment on carbon sequestration is discussed in this paper considering various studies with different results so it will lead to better understanding of the complex phenomenon. SOC sequestration is effective greenhouse gas mitigation strategy and a vital ecosystem service. Increasing SOC may helpful to mitigate negative effects of growing concentration of CO2 in atmosphere and may be advantageous in decelerating or reversal in global climate change rate.


Author(s):  
Joanna Horemans ◽  
Olga Vindušková ◽  
Gaby Deckmyn

Quantifying the output uncertainty and tracking down its origins is key to interpreting the results of model studies. We perform such an uncertainty analysis on the predictions of forest growth and yield under climate change. We specifically focus on the effect of the inter-annual climate variability. For that, the climate years in the model input (daily resolution) were randomly shuffled within each 5-year period. In total, 540 simulations (10 parameter sets, 9 climate shuffles, 3 global climate models and 2 mitigation scenarios), were made for one growing cycle (80 years) of a Scots pine forest growing in Peitz (Germany). Our results show that, besides the important effect of the parameter set, the random order of climate years can significantly change results such as basal area and produced volume, and the response of these to climate change. We stress that the effect of weather variability should be included in the design of impact model ensembles, and the accompanying uncertainty analysis. We further suggest presenting model results as likelihoods to allow risk assessment. For example, in our study the likelihood of a decrease in basal area of >10% with no mitigation was 20.4%, while the likelihood of an increase >10% was 34.4%.


2016 ◽  
Vol 23 (2) ◽  
pp. 37-43 ◽  
Author(s):  
B. K. Paudyal

The study was conducted in the Pragatisil Community Forest, Kaski District, Nepal in 2012 to assess the regeneration status of Sal (Shorea robusta) seedlings, its growth and plant diversity. A plot size of 25 m × 20 m was employed for trees, 10 m ×10 m for poles and 5 m × 5 m for regeneration. The growth parameters measured were dbh and height. A factorial arrangement of treatments was employed; the treatments being slope and aspect. The results showed that there was significant (p<0.05) effect of slope on dbh and basal area whereas there was no effect of aspect on growth parameters measured in the Pragatisil Community Forest. The regeneration of Sal was satisfactory (6,126 seedlings/ha), and there were 32 plant species in this forest. As there was higher basal area per ha in the Pragatisil Community Forest, it is recommended to have thinning of 40% of basal area for enhancing growth of remaining stems.Banko Janakari, Vol. 23, No. 2, 2013


2015 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Emmanuel Nyadzi ◽  
Mathew I. S. Ezenwa ◽  
Benjamin K. Nyarko ◽  
A. A. Okhimamhe ◽  
Thomas T. Bagamsah ◽  
...  

Biomass burning in Northern Ghana is a major cause for concern because of its potential contribution to global warming, hence climate change. This study assessed the emission of trace gases from human activities in the Guinea savanna of Northern Ghana using the guidelines of the Intergovernmental Panel on Climate Change. Carbon content of biomass was determined from four different vegetation covers in the study area; namely, widely open savanna woodland, grass/herb with scattered trees, open savanna woodland and closed savanna woodland. Under each vegetation cover, five plots (1 m x 1 m) were demarcated for the estimation of above-ground biomass density. Using the combustion furnace method, emitted carbon, methane and carbon monoxide were estimated. Results showed that the emitted methane (CH4) and carbon monoxide (CO) differed significantly (p&lt;0.05) under all the vegetation types. The gases were in perfect correlation (r=1.00) with the quantity of above-ground biomass density and carbon released, with more CO being emitted. Emission of CH4 and CO per hectare of burnt area in the open savanna woodland category was the highest with 0.001719 ton and 0.045119 ton respectively. Over time, emission of these gases may increase their atmospheric concentration, causing major health problems. The contribution to global warming, thus climate change, may also become quite significant. This underscores the fact that existing flaws in the wild fire management policy of Ghana must be effectively dealt with and appropriately implemented with regular reviews to reduce the annual wild fires that are very rampant in Northern Ghana, especially during the dry season.


2015 ◽  
Vol 338 ◽  
pp. 208-218 ◽  
Author(s):  
Keryn I. Paul ◽  
Stephen H. Roxburgh ◽  
Jacqueline R. England ◽  
Robert de Ligt ◽  
John S. Larmour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document