scholarly journals TMPRSS2, required for SARS-CoV-2 entry, is downregulated in lung cells by enzalutamide, a prostate cancer therapeutic

2020 ◽  
Author(s):  
Damien A. Leach ◽  
Ana-Maria Isac ◽  
Charlotte L. Bevan ◽  
Greg N. Brooke

Abstract The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, attacks various organs but most destructively the lung. It has been shown that SARS-CoV-2 entry into lung cells requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; activation of the androgen receptor increases TMPRSS2 levels in various tissues, most notably the prostate. We show here that treatment with the antiandrogen enzalutamide – a well-tolerated drug widely used in advanced prostate cancer – reduces TMPRSS2 levels in human lung cells. Further, enzalutamide treatment of mice dramatically decreased Tmprss2 levels in the lung. In support of this new experimental data, analysis of existing datasets shows striking co- expression of AR and TMPRSS2, including in specific lung cell types that are targeted by SARS- CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.

2021 ◽  
Author(s):  
D. A. Leach ◽  
A. Mohr ◽  
E. S. Giotis ◽  
A. M. Isac ◽  
L. L. Yates ◽  
...  

Abstract The COVID-19 pandemic, caused by the novel human coronavirus SARS-CoV-2 coronavirus, attacks various organs but most destructively the lung. It has been shown that SARS-CoV-2 entry into lung cells requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; activation of the androgen receptor increases TMPRSS2 levels in various tissues, most notably the prostate. We show here that treatment with the antiandrogen enzalutamide – a well-tolerated drug widely used in advanced prostate cancer – reduces TMPRSS2 levels in human lung cells. Further, enzalutamide treatment of mice dramatically decreased Tmprss2 levels in the lung. To determine therapeutic potential, we assessed uptake of SARS-CoV-2 Spike protein pseudotyped lentivirus and live SARS-CoV-2 into human lung cells and saw a significant reduction in viral entry and infection upon treatment with the antiandrogens enzalutamide and bicalutamide. In support of this new experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types that are targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. A. Leach ◽  
A. Mohr ◽  
E. S. Giotis ◽  
E. Cil ◽  
A. M. Isac ◽  
...  

AbstractSARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A60-A61
Author(s):  
Damien A Leach ◽  
Mohr Andrea ◽  
Ralf Zwacka ◽  
Stathis Giottis ◽  
Laura Yates ◽  
...  

Abstract The SARS-CoV-2 coronavirus is the cause of the COVID-19 pandemic. Entry of the virus into host cells, most destructively lung cells, requires two host cell surface proteins, ACE2 and TMPRSS2, downregulation of which is thus a potential therapeutic approach for COVID-19. Both of these cell surface proteins are steroid regulated: TMPRSS2 is a well-characterised androgen-regulated target in prostate cancer. Analysis of sequencing data shows co-expression of the androgen receptor (AR) and TMPRSS2 in key human lung cell types that are targeted by SARS- CoV-2. We show that treatment with antiandrogens such as enzalutamide (a well-tolerated drug widely used in advanced prostate cancer) significantly reduces TMPRSS2 levels in human lung cells and in vivo in mouse lung. We demonstrate that AR binding in the region of the TMPRSS2 gene differs between lung and prostate, identifying distinct regulatory regions. Together, the data and evidence presented supports clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.


Author(s):  
Caterina Prelli Bozzo ◽  
Rayhane Nchioua ◽  
Meta Volcic ◽  
Jana Krüger ◽  
Sandra Heller ◽  
...  

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) are thought to restrict numerous viral pathogens including severe acute respiratory syndrome coronaviruses (SARS-CoVs). However, most evidence comes from single-round pseudovirus infection studies of cells that overexpress IFITMs. Here, we verified that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. Strikingly, however, endogenous IFITM expression was essential for efficient infection of genuine SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral entry. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. Intriguingly, IFITM-derived peptides and targeting antibodies inhibited SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are important cofactors for SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and suitable targets for therapeutic approaches.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Li ◽  
Ming Han ◽  
Pengfei Dai ◽  
Wei Xu ◽  
Juan He ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly become a global public health threat. The efficacy of several repurposed drugs has been evaluated in clinical trials. Among these drugs, a second-generation antiandrogen agent, enzalutamide, was proposed because it reduces the expression of transmembrane serine protease 2 (TMPRSS2), a key component mediating SARS-CoV-2-driven entry, in prostate cancer cells. However, definitive evidence for the therapeutic efficacy of enzalutamide in COVID-19 is lacking. Here, we evaluated the antiviral efficacy of enzalutamide in prostate cancer cells, lung cancer cells, human lung organoids and Ad-ACE2-transduced mice. Tmprss2 knockout significantly inhibited SARS-CoV-2 infection in vivo. Enzalutamide effectively inhibited SARS-CoV-2 infection in human prostate cells, however, such antiviral efficacy was lacking in human lung cells and organoids. Accordingly, enzalutamide showed no antiviral activity due to the AR-independent TMPRSS2 expression in mouse and human lung epithelial cells. Moreover, we observed distinct AR binding patterns between prostate cells and lung cells and a lack of direct binding of AR to TMPRSS2 regulatory locus in human lung cells. Thus, our findings do not support the postulated protective role of enzalutamide in treating COVID-19 through reducing TMPRSS2 expression in lung cells.


Author(s):  
Fei Li ◽  
Ming Han ◽  
Pengfei Dai ◽  
Wei Xu ◽  
Juan He ◽  
...  

AbstractThe coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly become a global public health threat due to the lack of effective drugs or vaccines against SARS-CoV-2. The efficacy of several repurposed drugs has been evaluated in clinical trials. Among these drugs, a relatively new antiandrogen agent, enzalutamide, was proposed because it reduces the expression of transmembrane serine protease 2 (TMPRSS2), a key component mediating SARS-CoV-2-driven entry into host cells, in prostate cancer cells. However, definitive evidence for the therapeutic efficacy of enzalutamide in COVID-19 is lacking. Here, we evaluated the antiviral efficacy of enzalutamide in prostate cancer cells, lung cancer cells, human lung organoids and SARS-CoV-2-infected Ad-ACE2-transduced Tmprss2 knockout (Tmprss2-KO) and wild-type (WT) mice. TMPRSS2 knockout significantly inhibited SARS-CoV-2 infection in vivo. Enzalutamide effectively inhibited SARS-CoV-2 infection in human prostate cancer cells (LNCaP) but not in human lung cancer cells or patient-derived lung organoids. Although Tmprss2 knockout effectively blocked SARS-CoV-2 infection in ACE2-transduced mice, enzalutamide showed no antiviral activity due to the AR independence of TMPRSS2 expression in mouse and human lung epithelial cells. Moreover, we observed distinct AR binding patterns between prostate cells and lung cells and a lack of direct binding of AR to TMPRSS2 in human lung cells. Thus, our findings do not support the postulated protective role of enzalutamide in treating COVID-19.


2021 ◽  
Author(s):  
Caterina Prelli Bozzo ◽  
Rayhane Nchioua ◽  
Meta Volcic ◽  
Jana Krüger ◽  
Sandra Heller ◽  
...  

Abstract Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) are thought to restrict numerous viral pathogens including severe acute respiratory syndrome coronaviruses (SARS-CoVs). However, most evidence comes from single-round pseudovirus infection studies of cells that overexpress IFITMs. Here, we verified that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. Strikingly, however, endogenous IFITM expression was essential for efficient infection of genuine SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral entry. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. Intriguingly, IFITM-derived peptides and targeting antibodies inhibited SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are important cofactors for SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and suitable targets for therapeutic approaches.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caterina Prelli Bozzo ◽  
Rayhane Nchioua ◽  
Meta Volcic ◽  
Lennart Koepke ◽  
Jana Krüger ◽  
...  

AbstractInterferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


2009 ◽  
Vol 7 (suppl_1) ◽  
Author(s):  
Loretta Müller ◽  
Michael Riediker ◽  
Peter Wick ◽  
Martin Mohr ◽  
Peter Gehr ◽  
...  

Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-α and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-α concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.


Sign in / Sign up

Export Citation Format

Share Document