scholarly journals Investigation on Thermo-physical Properties of L-Valinium Picrate Single Crystal for Modern Applications

Author(s):  
M Manivannan ◽  
S. Balachandar ◽  
M. Jose ◽  
S A Martin Britto Dhas

Abstract Good quality L-valinium picrate single crystal was grown by slow evaporation technique. The lattice parameters of the crystal were measured by single crystal X-ray diffraction analysis. The High resolution X-ray diffraction study reveals good crystalline perfection of the grown crystals. The thermal diffusivity and specific heat capacity were experimentally measured using photoacoustic technique and standard DSC technique, respectively. The thermo physical properties such as thermal conductivity, thermal diffusivity, specific heat capacity, volumetric specific heat capacity, and thermal effusivity of LVP are reported for the first time at ambient temperature.

Author(s):  
Mathew Adefusika Adekoya ◽  
Sunday Samuel Oluyamo ◽  
Olawale Ramon Bello

This study examines the dynamic compression and thermo-physical properties of some woodparticles obtained from Akure, south local government area, Ondo State, South Western Nigeria. Thesewood particles are of the species of Celtis zenkeri and Celtis philippensis of the Ulmaceae family. Thesamples were possessed into different particle sizes (300, 600 and 850 µm) and subjected to variedcompacting pressures (2.6-3.0 MPa). The density and specific heat capacity of the wood samples weredetermined using weighing displacement methods and temperature dependent model while the thermaldiffusivity was estimated from other thermal properties. The results revealed significant variation in thevalues of the specific heat capacity as a result of change in pressure for all the wood samples considered.The density of wood samples lies between 4.51×102 -7.32×102 kg/m3 and the specific heat capacity valuesobtained for the samples fall within the range of 1.28×103-1.33×103 J/kg/K. It was also noted that thethermal diffusivity obtained falls within the range of 1.37×10-7-2.10×10-7 m2/s for the wood materialsconsidered. However, the values of the densities, specific heat capacities and thermal diffusivities of thesamples were found to change as the compacting pressure increased due to decreased in porosity. Theimplication of the study is that the mate


Author(s):  
E.V. Legostaeva ◽  
◽  
Yu.P. Sharkeev ◽  
O.A. Belyavskaya ◽  
V.P. Vavilov ◽  
...  

The results of studying the thermal conductivity and specific heat capacity of Zr-1 wt.% Nb and Ti-45 wt.% Nb in coarse-grained and ultrafine-grained states are presented. The influence of the utrafine-grained state on the thermo physical properties and the processes of dissipation and accumulation energy during deformation of the alloys are estimated. It is shown that formation of the ultrafine-grained state in the Zr-1 wt.% Nb alloy by abc -pressing and subsequent rolling leads to a decrease in its thermal conductivity and specific heat capacity by 10 and 20%, respectively, due to substructural hardening under severe plastic deformation. It is found that thermal conductivity and specific heat capacity of the ultrafine Ti-45 wt.% Nb alloy increase by 7.5 and 5%, respectively, due to dispersion hardening of the ω phase by nanoparticles and formation of a new α phase. It is established that the ultrafine-grained structure has a significant influence on the regularities of the dissipation and accumulation energy during plastic deformation, which in turn depend on their thermo-physical characteristics and on the structural and phase state.


Author(s):  
Byeongnam Jo ◽  
Debjyoti Banerjee

In this study we explore the material properties of carbonate salt eutectics that melt at high temperatures (exceeding 480 °C). These salt eutectics demonstrated anomalous enhancement in the specific heat capacity in both solid and liquid phases — when mixed with carious organic nanoparticles such as carbon nanotubes (CNT) and graphite nanoparticles. Theses experimental measurements are compared with previous reports in the literature for exploring the effect of the synthesis protocol on the resulting thermo-physical properties of these nanomaterials. The enhancement of the thermo-physical properties on mixing with nanoparticles is of significant interest in reducing the cost of thermal energy storage (TES) devices and systems. TES can be utilized for levelizing peaks in cyclical energy demands (or duties) that is typical of renewable energy applications where the input energy source may be intermittent (e.g., solar thermal); as well as in geothermal and nuclear energy applications.


Author(s):  
Hani Tiznobaik ◽  
Donghyun Shin

Abstract Increased in thermo-physical properties of molten salt nanofluids have been reported. These findings makes molten salts nanofluids one of the most promising thermal energy storage media. One of the main application of these types of materials are in concentrated solar power plants. In this study, an investigation is performed on nanofluids specific heat capacity mechanisms in order to provide a reasonable description of the specific heat capacity enhancement of nanofluids. Then, a comprehensive experiments are performed on the effects of nanoparticles concentration on the specific heat capacity and materials characterization of molten salt nanofluids. This study is performed to analyze the optimum amount of nanoparticle and find the way to maximize the effects of nanoparticle on thermophysical properties of molten slat. Different molten salts nanofluids with varying nanoparticles concentration were synthesized. The specific heat capacities of mixtures were measured by a modulated scanning calorimeter. Moreover, the material characterization analyses were performed using scanning electron microscopy to investigate the micro-structural characterization of different nanofluids.


2019 ◽  
Vol 13 (4) ◽  
pp. 5875-5904
Author(s):  
James Lau Tze Chen ◽  
Ahmed N. Oumer ◽  
Azizuddin A. A.

The pressure drop and thermal performance of various nanofluids can be affected by their thermo-physical properties. However, there are many different parameters that need to be considered when determining the thermo-physical properties of nanofluids. This paper highlights a detail reviews on the thermo-physical properties of nanofluids with different material type and effect of some process parameters (such as material type, temperature and concentration) on the thermo-physical properties of nanofluids. Four thermo-physical properties mainly density, viscosity, thermal conductivity and specific heat capacity from different literatures were summarized, discussed and presented. The lowest viscosity value of nanofluids in literature was mango bark water-based nanofluid (0.81cP). On the other hand, the maximum thermal conductivity value of nanofluids in the literature was GNP-Ag water-based nanofluid (0.69W/mK). The density and specific heat capacity are strongly dependent on the material type. Meanwhile, the viscosity and thermal conductivity are greatly affected by temperature and concentration. The most influential parameters on thermo-physical properties of nanofluids are material type followed by temperature. Most of the literatures confirmed bio nanofluids have low viscosity value and hybrid have high thermal conductivity values.


Author(s):  
Manikandan Periasamy ◽  
Rajoo Baskar

The objective of the study is to determine the thermo physical property variations (such as viscosity, density, specific heat capacity and thermal conductivity) of graphene suspended base fluid (Ethylene Glycol (EG) /Water (W)), with respect to graphene nanoparticle concentration and hot fluid inlet temperature. Graphene nanoparticle concentrations (0.2, 0.4, 0.6, 0.8 and 1 volume %) and the base fluid of 30:70 volume % of EG: Water is prepared initially. The impact of graphene nano particle addition on base fluids based on experimentation in the commercial plate heat exchanger was studied. In this experiment, the hot fluid inlet temperature was varied at 55? C, 65? C and 75? C. The experimental results of thermo physical properties were compared with the selected models proposed in the literature. Einstein (1956); Kitano (1981); and Bachelor models (1977) have been used to consider the effect of viscosity. The measured density and Specific heat capacity was validated with Pak and Cho and Xuan model respectively. To consider the effect of thermal conductivity, three different models (Maxwell, 1954; Vajjah, 2010; and Sahoo, 2012) have been used. Study revealed that the thermo physical properties of base fluid significantly affects with the graphene nanoparticle suspension.


1980 ◽  
Vol 35 (12) ◽  
pp. 1387-1389
Author(s):  
D. W. Engelfriet ◽  
W. L. Groeneveld ◽  
G. M. Nap

Abstract Heat capacity measurements on Mn(trz)2(NCS)2 in the range 1 - 90 K are reported. A λ-anomaly is found at Tc = 3.292(6) K. From a comparison of the high-temperature specific heat to the predictions from series expansions the intralayer exchange constant is found to be J/k = 0.245(5) K. From the total magnetic energy involved in the transition the value J/k = - 0.254(8) K is calculated. These results compare favourably with previous data from susceptibility measurements.From very recent X-ray diffraction experiments on a single crystal the space group is found to be Pbcn instead of Aba2, as was reported previously.


2010 ◽  
Vol 14 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Sunday Etuk ◽  
Louis Akpabio ◽  
Ita Akpan

Thermal conductivity values at the temperature of 301-303K have been measured for Zea mays straw board as well as Zea mays heartwood (cork) board. Comparative study of the thermal conductivity values of the boards reveal that Zea mays heartwood board has a lower thermal conductivity value to that of the straw board. The study also shows that the straw board is denser than the heartwood board. Specific heat capacity value is less in value for the heartwood board than the straw board. These parameters also affect the thermal diffusivity as well as thermal absorptivity values for the two types of boards. The result favours the two boards as thermal insulators for thermal envelop but with heartwood board as a preferred insulation material than the straw board.


Sign in / Sign up

Export Citation Format

Share Document