scholarly journals miR-18a-5p promotes NPC cell proliferation, invasion, migration, and EMT by targeting SMAD2

2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC. Methods Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Wound healing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelial mesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Western blot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo. Results miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promoted NPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the opposite results. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotes NPC growth and metastasis in vivo. Conclusions Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background: Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC.Methods:Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Woundhealing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelialmesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Westernblot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo.Results:miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promotedNPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the oppositeresults. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotesNPC growth and metastasis in vivo.Conclusions:Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.



2020 ◽  
Author(s):  
Hanshu Ji ◽  
Xiaoyu Zhang

Abstract Purpose: lncRNA NEAT1 has been reported as a tumor-promoting gene in a variety of tumors, but few studies have explored its role and mechanism in gastric cancer. In the face of increasing incidence of gastric cancer, how to improve the diagnostic accuracy and therapeutic effect of gastric cancer is a major clinical problem. Therefore, we studied the effect and mechanism of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition of gastric cancer cells. To inquiry into the effect of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells by regulating miR-129-5p/PBX3 axis. Methods: Totally 63 GC diagnosed and treated in our hospital were selected as the study subjects, whose paired GC tissues and pericarcinomatous tissues were collected as the study specimens after obtaining their consent. QRT-PCR was employed to detect the NEAT1 expression in tissues and cells to analyze the relationship between NEAT1 and clinicopathological data of GC patients. In addition, stable and transient overexpression and inhibition vectors were established and transfected into GC cells HCG-27 and MKN-45. CCK-8, traswell, and flow cytometry were employed to evaluate the proliferation, invasion, and apoptosis of transfected cells. The correlation of miR-129-5p between PBX3 and NEAT1 was assessed using dual luciferase reporter assay, while that between NEAT1 and miR-129-5p was assessed by RNA-binding protein immunoprecipitation (RIP) . Western blot was applied for the detection of apoptosis and EMT related proteins.Results: NEAT1 was overexpressed in GC patients and had a high diagnostic value. The expression of NEAT1 was related to the pathological stage, differentiation degree, tumor size and lymph node metastasis of patients with GC. Down-regulated NEAT1 brought decreased cell proliferation, invasion and EMT, and increased apoptosis. According to dual luciferase reporter assay, NEAT1 could target miR-129-5p, while in turn miR-129-5p could target PBX3. Functional analysis exhibited that miR-129-5p overexpression inhibited PBX3 in GC cells, affecting cell proliferation, invasion, EMT and apoptosis, and rescue experiments demonstrated that these effects were eliminated by up-regulating NEAT1 expression.Conclusion: Inhibition of NEAT1 could mediate miR-129-5p/PBX3 axis to promote apoptosis of GC cells, and reduce cell proliferation, invasion and EMT.



2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dawei Wang ◽  
Guoliang Lu ◽  
Yuan Shao ◽  
Da Xu

miRNAs are a class of non-coding RNAs that exert critical roles in various biological processes. The aim of the present study was to identify the functional roles of miR-802 in regulating epithelial–mesenchymal transition (EMT) in prostate cancer (PCa). miR-802 expression was detected in 73 pairs of PCa samples and PCa cell lines (PC3 and DU145 cells) by qRT-PCR. Cell proliferation was detected using MTT assay, and cell apoptosis was evaluated using flow cytometry. Transwell assay was conducted to investigate cell migration and invasion. Expression analysis of a set of EMT markers was performed to explore whether miR-802 is involved in EMT program. Xenograft model was established to investigate the function of miR-802 in carcinogenesis in vivo. The direct regulation of Flotillin-2 (Flot2) by miR-802 was identified using luciferase reporter assay. miR-802 was remarkably down-regulated in PCa tissues and cell lines. Gain-of-function trails showed that miR-802 serves as an ‘oncosuppressor’ in PCa through inhibiting cell proliferation and promoting cell apoptosis in vitro. Overexpression of miR-802 significantly suppressed in vivo PCa tumor growth. Luciferase reporter analysis identified Flot2 as a direct target of miR-802 in PCa cells. Overexpressed miR-802 significantly suppressed EMT, migration and invasion in PCa cells by regulating Flot2. We identified miR-802 as a novel tumor suppressor in PCa progression and elucidated a novel mechanism of the miR-802/Flot2 axis in the regulation of EMT, which may be a potential therapeutic target.



2018 ◽  
Vol 46 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Zhenxin Zheng ◽  
Feng Bao ◽  
Xuhong Chen ◽  
Hongbin Huang ◽  
Xiangfeng Zhang

Background/Aims: Growing evidence has shown that miR-330-3p is closely related to the biological behavior of cancer, including proliferation, metastasis, and prognosis. However, there have been no reports on miR-330-3p expression and function in osteosarcoma. Methods: Expression of miR-330-3p in osteosarcoma tissues and cell lines was examined by quantitative PCR. Effects of miR-330-3p on osteosarcoma cell proliferation were investigated in vitro with the Cell Counting Kit-8 colorimetric assay. Targets of miR-330-3p were identified by dual-luciferase reporter assay. Results: The results showed that expression of miR-330 decreased in osteosarcoma tissues and cell lines. Prognosis of patients with high miR-330-3p expression was much better than that of those with low expression (P=0.001), and multivariate analysis suggested that miR-330-3p is an independent prognostic factor for osteosarcoma. In addition, miR-330-3p overexpression significantly inhibited the growth of MG-63 and U2OS osteosarcoma cells. Dual-luciferase reporter assay demonstrated that Bmi-1 was a direct target gene of miR-330-3p, and in a recovery experiment, miR-330-3p suppressed osteosarcoma cell proliferation by directly targeting Bmi-1. Conclusion: Our results suggest that miR-330-3p acts as a tumor suppressor by regulating Bmi-1 expression in osteosarcoma. Thus, miR-330-3p may represent a novel therapeutic target for the treatment of osteosarcoma.



2019 ◽  
Vol 166 (5) ◽  
pp. 433-440 ◽  
Author(s):  
Wei Yin ◽  
Lei Shi ◽  
Yanjiao Mao

Abstract Nasopharyngeal carcinoma (NPC) is an important type of head and neck malignant cancer with geographical distribution. MicroRNA-449b-5p (miR-449b-5p) is related to the development of various cancers, while its function in NPC remains unknown. The present study aimed to investigate the role and target gene of miR-449b-5p in NPC. Expressions of miR-449b-5p in NPC cell lines and clinical tissues were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was determined by MTT and colony formation assays. Migration and invasion abilities after different treatment were evaluated by wound healing and Transwell assays, respectively. Dual-luciferase reporter assay was performed to explore the relationship between miR-449b-5p and tumour protein D52 (TPD52). TPD52 expression was determined by qRT-PCR and western blot assay. miR-449b-5p was significantly downregulated in NPC cell lines and clinical tissues than the matched control. Overexpression of miR-449b-5p inhibited proliferation, migration and invasion of NPC cells. Dual-luciferase reporter assay indicated that miR-449b-5p directly targeted TPD52. Furthermore, shRNA-mediated downregulation of TPD52 rectified the promotion of cell migration and invasion by miR-449b-5p inhibition. In conclusion, the present study suggests that miR-449b-5p, as a novel tumour-suppressive miRNA against NPC, inhibits proliferation, migration and invasion of NPC cells via inhibiting TPD52 expression.



Zygote ◽  
2020 ◽  
pp. 1-10
Author(s):  
Yulei Zhang ◽  
Muling Zhang

Summary Preeclampsia (PE), a pregnancy-specific disease, has become one of the leading causes of maternal and neonatal morbidity and mortality. Pathogenesis of PE has still not been fully addressed and there is a great need to develop early diagnosis markers and effective therapy. This study aimed to determine if lncRNA SNHG14 has a protective effect on placental trophoblast and prevents PE. SNHG14 levels in the peripheral blood from patients with PE or from women with healthy pregnancies were detected using RT-qPCR. The relationship between SNHG14 and miR-330-5p was determined using a dual-luciferase reporter assay. In addition, cell proliferation and cell cycle were evaluated by performing CCK8 assays and flow-cytometric analysis, respectively. Wound-healing and transwell assays were performed to assess cell migration and invasion ability. lncRNA SNHG14 was downregulated in PE patients; it was involved in trophoblast proliferation and regulated cell proliferation during G1/S transition. In addition, lncRNA SNHG14 promoted migration, invasion and epithelial–mesenchymal transition (EMT) in HTR-8/SVneo cells. Luciferase reporter assay indicated that lncRNA SNHG14 served as a molecular sponge for miR-330-5p and negatively regulated miR-330-5p expression in PE. Furthermore, the effects of silenced SNHG14 on trophoblast proliferation, migration, invasion and EMT were reversed by addition of miR-330-5p inhibitor, suggesting that in PE lncRNA SNHG14 functions by competitively binding to miR-330-5p. Taken together, the current study demonstrated that in PE lncRNA SNHG14 is a vital regulator by binding to miR-330-5p. SNHG14 might serve as a therapeutic application in PE progression.



2017 ◽  
Vol 43 (2) ◽  
pp. 768-774 ◽  
Author(s):  
Tieying Tao ◽  
Qinrong Shen ◽  
Jianmin Luo ◽  
Yang Xu ◽  
Wenqing Liang

Background/Aims: Increasing evidence has shown that miR-125a plays important role in human cancer progression. However, little is known about the function of miR-125a in osteosarcoma. Methods: The expression of miR-125a in osteosarcoma tissues and cell lines were examined by qRT-PCR. The biological role of miR-125a in osteosarcoma cell proliferation was examined in vitro. The targets of miR-125a were identified by a dual-luciferase reporter assay. Results: The results showed that the expression of miR-125a expression is significantly lower in osteosarcoma tissues and cell lines. Survival curves showed that the survival of patients in high miR-125a expression was significantly longer than that of patients with low miR-125a expression, and multivariate analysis suggested that miR-125a is an independent prognostic factor for osteosarcoma patients. In addition, it was found in this study that miR-125a can inhibit the growth of osteosarcoma cells. The dual-luciferase reporter assay demonstrated that E2F2 is a novel target gene for miR-125a. In addition, in a recovery experiment, it was shown that miR-125a inhibits the biological function of osteosarcoma cells by inhibiting the expression of E2F2. Conclusion: Our results suggest that miR-125a acts as a tumor suppressor via regulation of E2F2 expression in osteosarcoma progression, and miR-125a may represent a novel therapeutic target for the treatment of osteosarcoma.



2018 ◽  
Vol 51 (2) ◽  
pp. 886-896 ◽  
Author(s):  
Xiaoya Dong ◽  
Zhigang Fang ◽  
Mingxue Yu ◽  
Ling Zhang ◽  
Ruozhi Xiao ◽  
...  

Background/Aims: Among different molecular candidates, there is growing data to support that long noncoding RNAs (lncRNAs) play a significant role in acute myeloid leukemia (AML). HOXA-AS2 is significantly overexpressed in a variety of tumors and associated with anti-cancer drug resistance, however, little is known regarding the expression and function of HOXA-AS2 in the chemoresistance of AML. In this study, we aimed to determine the role and molecular mechanism of HOXA-AS2 in adriamycin-based chemotherapy resistance in AML cells. Methods: Quantitative real-time PCR was used to detect HOXA-AS2 expression in the BM samples and ADR cell lines, U/A and T/A cells. Furthermore, the effects of HOXA-AS2 silencing on cell proliferation and apoptosis were assessed in vitro by CCK8 and flow cytometry, and on tumor growth in vivo. Furthermore, bioinformatics online programs predicted and luciferase reporter assay were used to validate the association of HOXA-AS2 and miR-520c-3p in AML. Results: In this study, we showed that HOXA-AS2 is significantly upregulated in BM samples from AML patients after treatment with adriamycin-based chemotherapy and in U/A and T/A cells. Knockdown of HOXA-AS2 inhibited ADR cell proliferation in vitro and in vivo and promoted apoptosis. Bioinformatics online programs predicted that HOXA-AS2 sponge miR-520c-3p at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and anti-Ago2 RIP assay. HOXA-AS2 could negatively regulate the expression of miR-520c-3p in ADR cells. S100A4 was predicted as a downstream target of miR-520c-3p, which was confirmed by luciferase reporter assay. Conclusion: Our results suggest that HOXA-AS2 plays an important role in the resistance of AML cells to adriamycin. Thus, HOXA-AS2 may represent a therapeutic target for overcoming resistance to adriamycin-based chemotherapy in AML.



2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.



2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.



Sign in / Sign up

Export Citation Format

Share Document