lncRNA NEAT1 Inhibits Proliferation, Invasion and Epithelial-mesenchymal Transition of Gastric Cancer Cells by Regulating MiR-129-5p/PBX3 Axis

2020 ◽  
Author(s):  
Hanshu Ji ◽  
Xiaoyu Zhang

Abstract Purpose: lncRNA NEAT1 has been reported as a tumor-promoting gene in a variety of tumors, but few studies have explored its role and mechanism in gastric cancer. In the face of increasing incidence of gastric cancer, how to improve the diagnostic accuracy and therapeutic effect of gastric cancer is a major clinical problem. Therefore, we studied the effect and mechanism of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition of gastric cancer cells. To inquiry into the effect of lncRNA NEAT1 on the proliferation, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells by regulating miR-129-5p/PBX3 axis. Methods: Totally 63 GC diagnosed and treated in our hospital were selected as the study subjects, whose paired GC tissues and pericarcinomatous tissues were collected as the study specimens after obtaining their consent. QRT-PCR was employed to detect the NEAT1 expression in tissues and cells to analyze the relationship between NEAT1 and clinicopathological data of GC patients. In addition, stable and transient overexpression and inhibition vectors were established and transfected into GC cells HCG-27 and MKN-45. CCK-8, traswell, and flow cytometry were employed to evaluate the proliferation, invasion, and apoptosis of transfected cells. The correlation of miR-129-5p between PBX3 and NEAT1 was assessed using dual luciferase reporter assay, while that between NEAT1 and miR-129-5p was assessed by RNA-binding protein immunoprecipitation (RIP) . Western blot was applied for the detection of apoptosis and EMT related proteins.Results: NEAT1 was overexpressed in GC patients and had a high diagnostic value. The expression of NEAT1 was related to the pathological stage, differentiation degree, tumor size and lymph node metastasis of patients with GC. Down-regulated NEAT1 brought decreased cell proliferation, invasion and EMT, and increased apoptosis. According to dual luciferase reporter assay, NEAT1 could target miR-129-5p, while in turn miR-129-5p could target PBX3. Functional analysis exhibited that miR-129-5p overexpression inhibited PBX3 in GC cells, affecting cell proliferation, invasion, EMT and apoptosis, and rescue experiments demonstrated that these effects were eliminated by up-regulating NEAT1 expression.Conclusion: Inhibition of NEAT1 could mediate miR-129-5p/PBX3 axis to promote apoptosis of GC cells, and reduce cell proliferation, invasion and EMT.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jinxia Li ◽  
Chunyan Dai ◽  
Li Shen

Background. Ursolic acid (UA) is an antitumor component derived from Chinese herbal medicine; this study is to observe the effects of UA on epithelial-mesenchymal transition (EMT) in gastric cancer. Methods. (1) In vitro experiments: 25μmol/L and 50μmol/L UA were applied to BGC-823, AGS, MGC-803, and HGC-27 cells; MTT staining, Transwell assay, and flow cytometry were used to assess cell proliferation, cell migration, and apoptosis, respectively. Western blot was performed to detect the expressions of N-Cadherin, Vimentin, Snail, Twist, Axl, p-Axl, IKK, p-IKK, NF-κB, and p-NF-κB. (2) In vivo experiments: Ten BALB/c-nu mice were used to establish gastric cancer xenograft model. Five were orally given UA for 4 weeks and five were given normal saline. Expressions of N-Cadherin and Snail were examined by immunohistochemical assay; expressions of N-Cadherin, Snail, Twist, Axl, p-Axl, IKK, and p-IKK were detected by Western blot. Results. (1) UA inhibited cell proliferation in BGC-823 and HGC-27 cells in dose-dependent manners. (2) UA inhibited cell migration in BGC-823, AGS, and MGC-803 cells while inducing apoptosis in BGC-823 cells. (3) UA significantly decreased the expressions of N-Cadherin, Vimentin, Snail, Twist p-Axl, p-IKKα/β, and p-NF-κB in BGC-823 and MGC-803 cells. (4) UA distinctly decreased the expressions of N-Cadherin, Snail, p-Axl, and p-IKKα/β in gastric cancer xenograft model rats. Conclusion. UA can effectively inhibit the proliferation and migration and induce apoptosis of gastric cancer cells. The antitumor effect of UA is conducted by EMT inhibition, which may be associated with the regulation of Axl/NF-κB signaling pathway.


2021 ◽  
Vol 20 (11) ◽  
pp. 2249-2253
Author(s):  
Zong Chen ◽  
Yong Ding ◽  
Ying Zeng ◽  
Zhifeng Chen ◽  
Xueping Zhang ◽  
...  

Purpose: To investigate the effect of dexmedetomidine (DEX) on epithelial mesenchymal transition (EMT) in gastric cancer cells, and the role of microRNA-144-3p (miR-144-3p) in the process.Methods: The effect of DEX on miRNA expression profile was analyzed using GEO database(https://www.ncbi.nlm.nih.gov/gds/). Human gastric cancer cells were cultured in vitro, and one group of cells was treated with saline for 48 h (control group). Cells treated with DEX at doses of 0.01, 0.1 and 1.0 μmol/L for 48 h were marked as low-, medium- and high-DEX concentration groups. The mRNA expression levels of miR-144-3p, ZEB1, E-cadherin and vimentin were determined using real-time quantitative polymerase chain reaction (RT-PCR), while the protein expressions of ZEB1, E-cadherin and vimentin were assayed with Western blotting. Cell proliferation was determined with CCK-8 assay, while metastasis was measured using Transwell assay.Results: The GEO database demonstrated that the expression of miR-144-3p in rat cardiomyocytes was significantly decreased after DEX treatment (p < 0.05). The expression of miR-144-3p was decreased in all groups, when compared to the control group, but the expressions of ZEB1 and vimentin were increased, while that of E-cadherin was down-regulated (p < 0.05). Cell proliferation in the high-DEX concentration group was decreased (p < 0.05). The degrees of cell invasion and migration were increased in the medium- and high-DEX concentration groups (p < 0.05).Conclusion: DEX promotes the metastasis of gastric cancer cells by regulation of epithelialmesenchymal transition (EMT) and the expression of miR-144-3p. This finding provides a new insight into the treatment of gastric cancer.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC. Methods Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Wound healing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelial mesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Western blot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo. Results miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promoted NPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the opposite results. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotes NPC growth and metastasis in vivo. Conclusions Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhongsong Zhao ◽  
Xueping Liu

Background. Long noncoding ribonucleic acids (lncRNAs) were closely related to the development of gastric cancer. This study investigated the effect of SNHG7 on gastric cancer progression and its potential molecular mechanism. Methods. SNHG7 and microRNA-485-5p (miR-485-5p) expressions in gastric cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8), wound healing, and transwell experiments were used to detect cell proliferation, migration, and invasion. The dual luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Pearson’s correlation analysis were used to confirm the relationship between SNHG7 and miR-485-5p. Results. SNHG7 expression was increased in human gastric cancer tissues and cells. Knockdown of SNHG7 could notably inhibit the gastric cancer cells proliferation, migration, and invasion. The dual-luciferase reporter assay and RIP experiments proved that miR-485-5p was a direct target of SNHG7. At the same time, further experiments demonstrated that miR-485-5p inhibition reversed the suppression of SNHG7 knockdown on gastric cancer cells proliferation, migration, and invasion. Conclusions. SNHG7 knockdown could hamper gastric cancer progression via inhibiting miR-485-5p expression, providing a novel understanding for gastric cancer development.


2009 ◽  
Vol 20 (24) ◽  
pp. 5127-5137 ◽  
Author(s):  
Kai-Wen Hsu ◽  
Rong-Hong Hsieh ◽  
Chew-Wun Wu ◽  
Chin-Wen Chi ◽  
Yan-Hwa Wu Lee ◽  
...  

The c-Myc promoter binding protein 1 (MBP-1) is a transcriptional suppressor of c-myc expression and involved in control of tumorigenesis. Gastric cancer is one of the most frequent neoplasms and lethal malignancies worldwide. So far, the regulatory mechanism of its aggressiveness has not been clearly characterized. Here we studied roles of MBP-1 in gastric cancer progression. We found that cell proliferation was inhibited by MBP-1 overexpression in human stomach adenocarcinoma SC-M1 cells. Colony formation, migration, and invasion abilities of SC-M1 cells were suppressed by MBP-1 overexpression but promoted by MBP-1 knockdown. Furthermore, the xenografted tumor growth of SC-M1 cells was suppressed by MBP-1 overexpression. Metastasis in lungs of mice was inhibited by MBP-1 after tail vein injection with SC-M1 cells. MBP-1 also suppressed epithelial-mesenchymal transition in SC-M1 cells. Additionally, MBP-1 bound on cyclooxygenase 2 (COX-2) promoter and downregulated COX-2 expression. The MBP-1-suppressed tumor progression in SC-M1 cells were through inhibition of COX-2 expression. MBP-1 also exerted a suppressive effect on tumor progression of other gastric cancer cells such as AGS and NUGC-3 cells. Taken together, these results suggest that MBP-1–suppressed COX-2 expression plays an important role in the inhibition of growth and progression of gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document