scholarly journals Impaired effective functional connectivity of the sensorimotor network in interictal episodic migraineurs without aura

2020 ◽  
Author(s):  
Heng-Le Wei ◽  
Jing Chen ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background: Resting-state functional magnetic resonance imaging (Rs-fMRI) has confirmed sensorimotor network (SMN) dysfunction in migraine without aura (MwoA). However, the underlying mechanisms of SMN effective functional connectivity in MwoA remain unclear. We aimed to explore the association between clinical characteristics and effective functional connectivity in SMN, in interictal patients who have MwoA. Methods : We used Rs-fMRI to acquire imaging data in forty episodic patients with MwoA in the interictal phase and thirty-four healthy controls (HCs). Independent component analysis was used to profile the distribution of SMN and calculate the different SMN activity between the two groups. Subsequently, Granger causality analysis was used to analyze the effective functional connectivity between the SMN and other brain regions. Results: Compared to the HCs, MwoA patients showed higher activity in the bilateral postcentral gyri (PoCG), but lower activity in the left midcingulate cortex (MCC). Moreover, MwoA patients showed decreased effective functional connectivity from the SMN to left middle temporal gyrus, right putamen, left insula and bilateral precuneus, but increased effective functional connectivity to the right paracentral lobule. There was also significant effective functional connectivity from the primary visual cortex, right cuneus and right putamen to the SMN. In the interictal period, there was positive correlation between the activity of the right PoCG and the frequency of headache. The disease duration was positively correlated with abnormal effective functional connectivity from the left PoCG to right precuneus. In addition, the headache impact scores were negatively correlated with abnormal effective functional connectivity from the left MCC to right paracentral lobule, as well as from the right precuneus to left PoCG. Conclusions: These differential, resting-state functional activities of the SMN in episodic MwoA may contribute to the understanding of migraine-related intra- and internetwork imbalances associated with nociceptive regulation and chronification.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Heng-Le Wei ◽  
Jing Chen ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background Resting-state functional magnetic resonance imaging (Rs-fMRI) has confirmed sensorimotor network (SMN) dysfunction in migraine without aura (MwoA). However, the underlying mechanisms of SMN effective functional connectivity in MwoA remain unclear. We aimed to explore the association between clinical characteristics and effective functional connectivity in SMN, in interictal patients who have MwoA. Methods We used Rs-fMRI to acquire imaging data in 40 episodic patients with MwoA in the interictal phase and 34 healthy controls (HCs). Independent component analysis was used to profile the distribution of SMN and calculate the different SMN activity between the two groups. Subsequently, Granger causality analysis was used to analyze the effective functional connectivity between the SMN and other brain regions. Results Compared to the HCs, MwoA patients showed higher activity in the bilateral postcentral gyri (PoCG), but lower activity in the left midcingulate cortex (MCC). Moreover, MwoA patients showed decreased effective functional connectivity from the SMN to left middle temporal gyrus, right putamen, left insula and bilateral precuneus, but increased effective functional connectivity to the right paracentral lobule. There was also significant effective functional connectivity from the primary visual cortex, right cuneus and right putamen to the SMN. In the interictal period, there was positive correlation between the activity of the right PoCG and the frequency of headache. The disease duration was positively correlated with abnormal effective functional connectivity from the left PoCG to right precuneus. In addition, the headache impact scores were negatively correlated with abnormal effective functional connectivity from the left MCC to right paracentral lobule, as well as from the right precuneus to left PoCG. Conclusions These differential, resting-state functional activities of the SMN in episodic MwoA may contribute to the understanding of migraine-related intra- and internetwork imbalances associated with nociceptive regulation and chronification.


2020 ◽  
Author(s):  
Heng-Le Wei ◽  
Jing Chen ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background: Resting-state functional magnetic resonance imaging (Rs-fMRI) has confirmed sensorimotor network (SMN) dysfunction in migraine without aura (MwoA). However, the underlying mechanisms of SMN causal functional connectivity in MwoA remain unclear. We aimed to explore the association between clinical characteristics and effective functional connectivity in SMN, in interictal patients who have MwoA.Methods: We used Rs-fMRI to acquire imaging data in forty episodic patients with MwoA in the interictal phase and thirty-four healthy controls (HCs). Independent component analysis was used to profile the distribution of SMN and calculate the different SMN activity between the two groups. Subsequently, Granger causality analysis was used to analyze the effective causal connectivity between the SMN and other brain regions.Results: Compared to the HCs, MwoA patients showed higher activity in the bilateral postcentral gyri (PoCG) and supplementary motor areas, but lower activity in left Rolandic operculum/insula. Moreover, MwoA patients showed significantly causal connectivity from the SMN to the left calcarine sulcus, left middle temporal gyrus, right angular gyrus and right precuneus. There was also significant causal connectivity from the left calcarine sulcus, left inferior orbitofrontal cortex, right cuneus, right putamen and left inferior parietal lobule to the SMN. In the interictal period, there was positive correlation between the activity of the left PoCG and headache frequency (r = 0.410, p = 0.013), but negative correlation between the activity of the right PoCG and the impact of headache (r = -0.397, p = 0.016). In addition, the disease duration was directly proportional to the connectivity strength from the left PoCG to the right angular gyrus (r = 0.418, p = 0.011), and from the right PoCG to the left calcarine sulcus (r = 0.377, p = 0.023).Conclusions: These differential, resting-state functional activities of the SMN in episodic MwoA may contribute to the understanding of migraine-related intra- and internetwork imbalances associated with nociceptive regulation and chronification.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2016 ◽  
Author(s):  
Xin Di ◽  
Bharat B Biswal

Background: Males are more likely to suffer from autism spectrum disorder (ASD) than females. As to whether females with ASD have similar brain alterations remain an open question. The current study aimed to examine sex-dependent as well as sex-independent alterations in resting-state functional connectivity in individuals with ASD compared with typically developing (TD) individuals. Method: Resting-state functional MRI data were acquired from the Autism Brain Imaging Data Exchange (ABIDE). Subjects between 6 to 20 years of age were included for analysis. After matching the intelligence quotient between groups for each dataset, and removing subjects due to excessive head motion, the resulting effective sample contained 28 females with ASD, 49 TD females, 129 males with ASD, and 141 TD males, with a two (diagnosis) by two (sex) design. Functional connectivity among 153 regions of interest (ROIs) comprising the whole brain was computed. Two by two analysis of variance was used to identify connectivity that showed diagnosis by sex interaction or main effects of diagnosis. Results: The main effects of diagnosis were found mainly between visual cortex and other brain regions, indicating sex-independent connectivity alterations. We also observed two connections whose connectivity showed diagnosis by sex interaction between the precuneus and medial cerebellum as well as the precunes and dorsal frontal cortex. While males with ASD showed higher connectivity in these connections compared with TD males, females with ASD had lower connectivity than their counterparts. Conclusions: Both sex-dependent and sex-independent functional connectivity alterations are present in ASD.


2021 ◽  
Author(s):  
Bailee L. Malivoire

Posttraumatic stress disorder (PTSD) is associated with abnormal hippocampal activity; however, the functional connectivity (FC) of the hippocampus with other brain regions and its relations with symptoms warrants further attention. I investigated FC of the hippocampus at a subregional level in PTSD during a resting state compared to trauma exposed controls (TECs). Based on imaging literature in PTSD, I targeted the FCs of the hippocampal head and tail subregions with the amygdala, medial prefrontal cortex (mPFC), and the posterior cingulate (PCC). The PTSD group had significantly greater FC compared to the TEC group between the left hippocampal head and the right amygdala, and for the left hippocampal tail with bilateral PCC. Resting state FC predicted symptom severity at time of scan and 4-months post-scan. These results highlight abnormal illness-related FC with both the hippocampal head and tail and provide support for future investigations of imaging biomarkers predictive of disease progression.


2021 ◽  
Vol 11 (8) ◽  
pp. 1107
Author(s):  
Junkai Wang ◽  
Yachao Xu ◽  
Gopikrishna Deshpande ◽  
Kuncheng Li ◽  
Pei Sun ◽  
...  

Altered connectivity within and between the resting-state networks (RSNs) brought about by anesthetics that induce altered consciousness remains incompletely understood. It is known that the dorsal attention network (DAN) and its anticorrelations with other RSNs have been implicated in consciousness. However, the role of DAN-related functional patterns in drug-induced sedative effects is less clear. In the current study, we investigated altered functional connectivity of the DAN during midazolam-induced light sedation. In a placebo-controlled and within-subjects experimental study, fourteen healthy volunteers received midazolam or saline with a 1-week interval. Resting-state fMRI data were acquired before and after intravenous drug administration. A multiple region of interest-driven analysis was employed to investigate connectivity within and between RSNs. It was found that functional connectivity was significantly decreased by midazolam injection in two regions located in the left inferior parietal lobule and the left middle temporal area within the DAN as compared with the saline condition. We also identified three clusters in anticorrelation between the DAN and other RSNs for the interaction effect, which included the left medial prefrontal cortex, the right superior temporal gyrus, and the right superior frontal gyrus. Connectivity between all regions and DAN was significantly decreased by midazolam injection. The sensorimotor network was minimally affected. Midazolam decreased functional connectivity of the dorsal attention network. These findings advance the understanding of the neural mechanism of sedation, and such functional patterns might have clinical implications in other medical conditions related to patients with cognitive impairment.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Stefanie Heba ◽  
Melanie Lenz ◽  
Tobias Kalisch ◽  
Oliver Höffken ◽  
Lauren M. Schweizer ◽  
...  

Correlations between inherent, task-free low-frequency fluctuations in the blood oxygenation level-dependent (BOLD) signals of the brain provide a potent tool to delineate its functional architecture in terms of intrinsic functional connectivity (iFC). Still, it remains unclear how iFC is modulated during learning. We employed whole-brain resting-state magnetic resonance imaging prior to and after training-independent repetitive sensory stimulation (rSS), which is known to induce somatosensory cortical reorganization. We investigated which areas in the sensorimotor network are susceptible to neural plasticity (i.e., where changes in functional connectivity occurred) and where iFC might be indicative of enhanced tactile performance. We hypothesized iFC to increase in those brain regions primarily receiving the afferent tactile input. Strengthened intrinsic connectivity within the sensorimotor network after rSS was found not only in the postcentral gyrus contralateral to the stimulated hand, but also in associative brain regions, where iFC correlated positively with tactile performance or learning. We also observed that rSS led to attenuation of the network at higher cortical levels, which possibly promotes facilitation of tactile discrimination. We found that resting-state BOLD fluctuations are linked to behavioral performance and sensory learning, indicating that network fluctuations at rest are predictive of behavioral changes and neuroplasticity.


2021 ◽  
Vol 11 (11) ◽  
pp. 1539
Author(s):  
Gianluca Cruciani ◽  
Maddalena Boccia ◽  
Vittorio Lingiardi ◽  
Guido Giovanardi ◽  
Pietro Zingaretti ◽  
...  

Studies comparing organized (O) and unresolved/disorganized (UD) attachment have consistently shown structural and functional brain abnormalities, although whether and how attachment patterns may affect resting state functional connectivity (RSFC) is still little characterized. Here, we investigated RSFC of temporal and limbic regions of interest for UD attachment. Participants’ attachment was classified via the Adult Attachment Interview, and all participants underwent clinical assessment. Functional magnetic resonance imaging data were collected from 11 UD individuals and seven matched O participants during rest. A seed-to-voxel analysis was performed, including the anterior and the posterior cingulate cortex, the bilateral insula, amygdala and hippocampus as seed regions. No group differences in the clinical scales emerged. Compared to O, the UD group showed lower RSFC between the left amygdala and the left cerebellum (lobules VIII), and lower functional coupling between the right hippocampus and the posterior portion of the right middle temporal gyrus. Moreover, UD participants showed higher RSFC between the right amygdala and the anterior cingulate cortex. Our findings suggest RSFC alterations in regions associated with encoding of salient events, emotion processing, memories retrieval and self-referential processing in UD participants, highlighting the potential role of attachment experiences in shaping brain abnormalities also in non-clinical UD individuals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Huang ◽  
Muni Xiao ◽  
Ming Ai ◽  
Jianmei Chen ◽  
Wo Wang ◽  
...  

Background: Non-suicidal self-injury (NSSI), which commonly occurs during adolescence, often co-occurs with major depressive disorder (MDD). However, the underlying neurobiological mechanisms in adolescents with MDD who engage in NSSI remain unclear. The current study examined the aberrant local neural activity in certain areas of the visual regions and the default mode network (DMN) and the resting-state functional connectivity (rs-FC) in changed brain regions in adolescents with MDD who engage in NSSI and adolescents with MDD only.Methods: A total of 67 adolescents with MDD were divided into two groups based on their NSSI behavior: the NSSI group (n = 31) and an age-, gender-, and education-matched MDD group (n = 36). The Hamilton Depression Rating Scale (HAMD) was used to assess the severity of MDD. Amplitude of low-frequency fluctuation (ALFF) analysis was used to detect alterations in local neural activity. Brain regions with aberrant neural activity were considered regions of interest (ROI). ALFF-based rs-FC analysis was used to further explore the underlying changes in connectivity between ROI and other areas in the NSSI group. Correlation analyses were performed to examine the relationship between neural changes and clinical characteristics.Results: There was no significant difference in HAMD scores between the two groups. ALFF analysis revealed that, compared to adolescents with MDD only, adolescents with MDD who engaged in NSSI displayed significantly enhanced neural activity in the right fusiform gyrus (FFG. R) and the right median cingulate and paracingulate gyri (DCG. R). Significantly reduced rs-FC of the FFG. R-bilateral medial orbital of the superior frontal gyrus (ORBsupmed. L/R)/bilateral medial superior frontal gyrus (SFGmed. L/R), FFG. R-bilateral posterior cingulate gyrus (PCG. L/R), DCG. R-left pallidum (PAL. L), DCG. R-right superior temporal gyrus (STG. R), and DCG. R-right postcentral gyrus (PoCG. R)/right inferior parietal lobule (IPL. R) was found in adolescents with MDD who were engaged in NSSI. Additionally, no significant correlations were observed between ALFF or rs-FC values and the HAMD scores between the two groups.Limitations: Owing to the cross-sectional design, the alterations in ALFF and rs-FC values in the FFG. R and DCG. R could not demonstrate that it was a state or feature in adolescents with MDD who engaged in NSSI. Additionally, the sample size was relatively small.Conclusions: This study highlights changes in regional brain activity and remote connectivity in the FFG. R and DCG. R in adolescents with MDD who engage in NSSI. This could provide a new perspective for further studies on the neurobiological mechanism of NSSI behavior in adolescents with MDD.


2019 ◽  
Author(s):  
Huayu Zhang ◽  
Yue Zhao ◽  
Weifang Cao ◽  
Dong Cui ◽  
Qing Jiao ◽  
...  

Abstract Background:ADHD is one of the most common psychiatric disorders in children and adolescents. Altered functional connectivity has been associated with ADHD symptoms. This study aimed to investigate abnormal changes in the functional connectivity of resting-state brain networks (RSNs) among adolescent patients with different subtypes of ADHD. Methods: The data were obtained from the ADHD-200 Global Competition, including fMRI data from 88 ADHD patients (56 patients of ADHD-Combined,ADHD-C and 32 patients of ADHD-Inattentive, ADHD-I) and 67 Typically-Developing Controls (TD-C). Group ICA was utilized to research aberrant brain functional connectivity within different subtypes of ADHD. Results: Compared with TD-C group, the clusters of decreased functional connectivity were located in the left inferior occipital gyrus (p=0.0041) and right superior occipital gyrus (p=0.0011) of DAN, supplementary motor area (p=0.0036) of ECN, left supramarginal gyrus (p=0.0081) of SN, middle temporal gyrus (p=0.0041) and superior medial frontal gyrus (p=0.0055) of DMN in ADHD-C group. In the ADHD-I group, decreased functional connectivity was found in the right superior parietal gyrus (p=0.0017) of DAN and left middle temporal gyrus (p=0.0105) of DMN. The decreased functional connectivity of ADHD-C group was found in superior temporal gyrus (p=0.0062) of AN, inferior temporal gyrus (p=0.0016) of DAN, dorsolateral superior frontal gyrus (p=0.0082) of DMN compared to ADHD-I group. All the clusters surviving at p<0.05 (AlphaSim correction). Conclusion: The results suggested that decreased functional connectivity within the DMN and DAN was responsible, at least in part, for the symptom of inattention in ADHD-I patients. Similarly, we believed that the impaired functional connectivity within networks may contribute to the manifestations of ADHD-C patients, including inattention, hyperactivity/impulsivity, and unconscious movements.


Sign in / Sign up

Export Citation Format

Share Document