scholarly journals The Effect of Light Sedation with Midazolam on Functional Connectivity of the Dorsal Attention Network

2021 ◽  
Vol 11 (8) ◽  
pp. 1107
Author(s):  
Junkai Wang ◽  
Yachao Xu ◽  
Gopikrishna Deshpande ◽  
Kuncheng Li ◽  
Pei Sun ◽  
...  

Altered connectivity within and between the resting-state networks (RSNs) brought about by anesthetics that induce altered consciousness remains incompletely understood. It is known that the dorsal attention network (DAN) and its anticorrelations with other RSNs have been implicated in consciousness. However, the role of DAN-related functional patterns in drug-induced sedative effects is less clear. In the current study, we investigated altered functional connectivity of the DAN during midazolam-induced light sedation. In a placebo-controlled and within-subjects experimental study, fourteen healthy volunteers received midazolam or saline with a 1-week interval. Resting-state fMRI data were acquired before and after intravenous drug administration. A multiple region of interest-driven analysis was employed to investigate connectivity within and between RSNs. It was found that functional connectivity was significantly decreased by midazolam injection in two regions located in the left inferior parietal lobule and the left middle temporal area within the DAN as compared with the saline condition. We also identified three clusters in anticorrelation between the DAN and other RSNs for the interaction effect, which included the left medial prefrontal cortex, the right superior temporal gyrus, and the right superior frontal gyrus. Connectivity between all regions and DAN was significantly decreased by midazolam injection. The sensorimotor network was minimally affected. Midazolam decreased functional connectivity of the dorsal attention network. These findings advance the understanding of the neural mechanism of sedation, and such functional patterns might have clinical implications in other medical conditions related to patients with cognitive impairment.

2017 ◽  
Vol 13 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Hui Juan Chen ◽  
Jiqiu Wen ◽  
Rongfeng Qi ◽  
Jianhui Zhong ◽  
U. Joseph Schoepf ◽  
...  

Background and objectivesCognition in ESRD may be improved by kidney transplantation, but mechanisms are unclear. We explored patterns of resting-state networks with resting-state functional magnetic resonance imaging among patients with ESRD before and after kidney transplantation.Design, setting, participants, & measurementsThirty-seven patients with ESRD scheduled for kidney transplantation and 22 age-, sex-, and education-matched healthy subjects underwent resting-state functional magnetic resonance imaging. Patients were imaged before and 1 and 6 months after kidney transplantation. Functional connectivity of seven resting-state subnetworks was evaluated: default mode network, dorsal attention network, central executive network, self-referential network, sensorimotor network, visual network, and auditory network. Mixed effects models tested associations of ESRD, kidney transplantation, and neuropsychological measurements with functional connectivity.ResultsCompared with controls, pretransplant patients showed abnormal functional connectivity in six subnetworks. Compared with pretransplant patients, increased functional connectivity was observed in the default mode network, the dorsal attention network, the central executive network, the sensorimotor network, the auditory network, and the visual network 1 and 6 months after kidney transplantation (P=0.01). Six months after kidney transplantation, no significant difference in functional connectivity was observed for the dorsal attention network, the central executive network, the auditory network, or the visual network between patients and controls. Default mode network and sensorimotor network remained significantly different from those in controls when assessed 6 months after kidney transplantation. A relationship between functional connectivity and neuropsychological measurements was found in specific brain regions of some brain networks.ConclusionsThe recovery patterns of resting-state subnetworks vary after kidney transplantation. The dorsal attention network, the central executive network, the auditory network, and the visual network recovered to normal levels, whereas the default mode network and the sensorimotor network did not recover completely 6 months after kidney transplantation. Neural resting-state functional connectivity was lower among patients with ESRD compared with control subjects, but it significantly improved with kidney transplantation. Resting-state subnetworks exhibited variable recovery, in some cases to levels that were no longer significantly different from those of normal controls.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Brett Froeliger ◽  
Eric L. Garland ◽  
Rachel V. Kozink ◽  
Leslie A. Modlin ◽  
Nan-Kuei Chen ◽  
...  

Meditation practice alters intrinsic resting-state functional connectivity (rsFC) in the default mode network (DMN). However, little is known regarding the effects of meditation on other resting-state networks. The aim of current study was to investigate the effects of meditation experience and meditation-state functional connectivity (msFC) on multiple resting-state networks (RSNs). Meditation practitioners (MPs) performed two 5-minute scans, one during rest, one while meditating. A meditation naïve control group (CG) underwent one resting-state scan. Exploratory regression analyses of the relations between years of meditation practice and rsFC and msFC were conducted. During resting-state, MP as compared to CG exhibited greater rsFC within the Dorsal Attention Network (DAN). Among MP, meditation, as compared to rest, strengthened FC between the DAN and DMN and Salience network whereas it decreased FC between the DAN, dorsal medial PFC, and insula. Regression analyses revealed positive correlations between the number of years of meditation experience and msFC between DAN, thalamus, and anterior parietal sulcus, whereas negative correlations between DAN, lateral and superior parietal, and insula. These findings suggest that the practice of meditation strengthens FC within the DAN as well as strengthens the coupling between distributed networks that are involved in attention, self-referential processes, and affective response.


2020 ◽  
Author(s):  
Heng-Le Wei ◽  
Jing Chen ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background: Resting-state functional magnetic resonance imaging (Rs-fMRI) has confirmed sensorimotor network (SMN) dysfunction in migraine without aura (MwoA). However, the underlying mechanisms of SMN causal functional connectivity in MwoA remain unclear. We aimed to explore the association between clinical characteristics and effective functional connectivity in SMN, in interictal patients who have MwoA.Methods: We used Rs-fMRI to acquire imaging data in forty episodic patients with MwoA in the interictal phase and thirty-four healthy controls (HCs). Independent component analysis was used to profile the distribution of SMN and calculate the different SMN activity between the two groups. Subsequently, Granger causality analysis was used to analyze the effective causal connectivity between the SMN and other brain regions.Results: Compared to the HCs, MwoA patients showed higher activity in the bilateral postcentral gyri (PoCG) and supplementary motor areas, but lower activity in left Rolandic operculum/insula. Moreover, MwoA patients showed significantly causal connectivity from the SMN to the left calcarine sulcus, left middle temporal gyrus, right angular gyrus and right precuneus. There was also significant causal connectivity from the left calcarine sulcus, left inferior orbitofrontal cortex, right cuneus, right putamen and left inferior parietal lobule to the SMN. In the interictal period, there was positive correlation between the activity of the left PoCG and headache frequency (r = 0.410, p = 0.013), but negative correlation between the activity of the right PoCG and the impact of headache (r = -0.397, p = 0.016). In addition, the disease duration was directly proportional to the connectivity strength from the left PoCG to the right angular gyrus (r = 0.418, p = 0.011), and from the right PoCG to the left calcarine sulcus (r = 0.377, p = 0.023).Conclusions: These differential, resting-state functional activities of the SMN in episodic MwoA may contribute to the understanding of migraine-related intra- and internetwork imbalances associated with nociceptive regulation and chronification.


Author(s):  
On-Yee Lo ◽  
Mark A Halko ◽  
Kathryn J Devaney ◽  
Peter M Wayne ◽  
Lewis A Lipsitz ◽  
...  

Abstract Background In older adults, elevated gait variability when walking has been associated with both cognitive impairment and future falls. This study leveraged three existing datasets to determine relationships between gait variability and the strength of functional connectivity within and between large-scale brain networks in healthy older adults, those with mild-to-moderate functional impairment, and those with Parkinson’s disease (PD). Method Gait and resting-state fMRI data were extracted from existing datasets on: 1) 12 older adults without overt disease yet with slow gait and mild executive dysfunction; 2) 12 older adults with intact cognitive-motor function and age- and sex-matched to the first cohort; and 3) 15 individuals with PD. Gait variability (%, coefficient of variation of stride time) during preferred walking speed was measured and correlated with the degree of functional connectivity within and between seven established large-scale functional brain networks. Results Regression models adjusted for age and sex revealed that in each cohort, those with less gait variability exhibited greater negative correlation between fluctuations in resting-state brain activity between the default network and the dorsal attention network (Functionally-limited older: β=4.38, p=.027; Healthy older: β=1.66, p=.032; PD: β=1.65, p=.005). No other within- or between- network connectivity outcomes were consistently related to gait variability across all three cohorts. Conclusion These results provide strong evidence that gait variability is uniquely related to functional connectivity between the default network and the dorsal attention network, and that this relationship may be independent of both functional status and underlying brain disease.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Huayu Zhang ◽  
Yue Zhao ◽  
Weifang Cao ◽  
Dong Cui ◽  
Qing Jiao ◽  
...  

Abstract Background ADHD is one of the most common psychiatric disorders in children and adolescents. Altered functional connectivity has been associated with ADHD symptoms. This study aimed to investigate abnormal changes in the functional connectivity of resting-state brain networks (RSNs) among adolescent patients with different subtypes of ADHD. Methods The data were obtained from the ADHD-200 Global Competition, including fMRI data from 88 ADHD patients (56 patients of ADHD-Combined, ADHD-C and 32 patients of ADHD-Inattentive, ADHD-I) and 67 typically developing controls (TD-C). Group ICA was utilized to research aberrant brain functional connectivity within the different subtypes of ADHD. Results In comparison with the TD-C group, the ADHD-C group showed clusters of decreased functional connectivity in the left inferior occipital gyrus (p = 0.0041) and right superior occipital gyrus (p = 0.0011) of the dorsal attention network (DAN), supplementary motor area (p = 0.0036) of the executive control network (ECN), left supramarginal gyrus (p = 0.0081) of the salience network (SN), middle temporal gyrus (p = 0.0041), and superior medial frontal gyrus (p = 0.0055) of the default mode network (DMN), while the ADHD-I group showed decreased functional connectivity in the right superior parietal gyrus (p = 0.0017) of the DAN and left middle temporal gyrus (p = 0.0105) of the DMN. In comparison with the ADHD-I group, the ADHD-C group showed decreased functional connectivity in the superior temporal gyrus (p = 0.0062) of the AN, inferior temporal gyrus (p = 0.0016) of the DAN, and the dorsolateral superior frontal gyrus (p = 0.0082) of the DMN. All the clusters surviving at p < 0.05 (AlphaSim correction). Conclusion The results suggested that decreased functional connectivity within the DMN and DAN was responsible, at least in part, for the symptom of inattention in ADHD-I patients. Similarly, we believed that the impaired functional connectivity within networks may contribute to the manifestations of ADHD-C patients, including inattention, hyperactivity/impulsivity, and unconscious movements.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Haimeng Hu ◽  
Yining Lyu ◽  
Shihong Li ◽  
Zheng Yuan ◽  
Chuntao Ye ◽  
...  

Previous functional magnetic resonance imaging (fMRI) analyses have shown that the dorsal attention network (DAN) is involved in the pathophysiological changes of tinnitus, but few relevant studies have been conducted, and the conclusions to date are not uniform. The purpose of this research was to test whether there is a change in intrinsic functional connectivity (FC) patterns between the DAN and other brain regions in tinnitus patients. Thirty-one patients with persistent tinnitus and thirty-three healthy controls were enrolled in this study. A group independent component analysis (ICA), degree centrality (DC) analysis, and seed-based FC analysis were conducted. In the group ICA, the tinnitus patients showed increased connectivity in the left superior parietal gyrus in the DAN compared to the healthy controls. Compared with the healthy controls, the tinnitus patients showed increased DC in the left inferior parietal gyrus and decreased DC in the left precuneus within the DAN. The clusters within the DAN with significant differences in the ICA or DC analysis between the tinnitus patients and the healthy controls were selected as regions of interest (ROIs) for seeds. The tinnitus patients exhibited significantly increased FC from the left superior parietal gyrus to several brain regions, including the left inferior parietal gyrus, the left superior marginal gyrus, and the right superior frontal gyrus, and decreased FC to the right anterior cingulate cortex. The tinnitus patients exhibited decreased FC from the left precuneus to the left inferior occipital gyrus, left calcarine cortex, and left superior frontal gyrus compared with the healthy controls. The findings of this study show that compared with healthy controls, tinnitus patients have altered functional connections not only within the DAN but also between the DAN and other brain regions. These results suggest that it may be possible to improve the disturbance and influence of tinnitus by regulating the DAN.


2020 ◽  
Author(s):  
Huayu Zhang ◽  
Yue Zhao ◽  
Weifang Cao ◽  
Dong Cui ◽  
Qing Jiao ◽  
...  

Abstract Background: ADHD is one of the most common psychiatric disorders in children and adolescents. Altered functional connectivity has been associated with ADHD symptoms. This study aimed to investigate abnormal changes in the functional connectivity of resting-state brain networks (RSNs) among adolescent patients with different subtypes of ADHD. Methods: The data were obtained from the ADHD-200 Global Competition, including fMRI data from 88 ADHD patients (56 patients of ADHD-Combined, ADHD-C and 32 patients of ADHD-Inattentive, ADHD-I) and 67 typically developing controls (TD-C). Group ICA was utilized to research aberrant brain functional connectivity within the different subtypes of ADHD. Results: In comparison with the TD-C group, the ADHD-C group showed clusters of decreased functional connectivity in the left inferior occipital gyrus (p = 0.0041) and right superior occipital gyrus (p = 0.0011) of the dorsal attention network (DAN), supplementary motor area (p = 0.0036) of the executive control network (ECN), left supramarginal gyrus (p = 0.0081) of the salience network (SN), middle temporal gyrus (p = 0.0041), and superior medial frontal gyrus (p = 0.0055) of the default mode network (DMN), while the ADHD-I group showed decreased functional connectivity in the right superior parietal gyrus (p = 0.0017) of the DAN and left middle temporal gyrus (p = 0.0105) of the DMN. In comparison with the ADHD-I group, the ADHD-C group showed decreased functional connectivity in the superior temporal gyrus (p = 0.0062) of the AN, inferior temporal gyrus (p = 0.0016) of the DAN, and the dorsolateral superior frontal gyrus (p = 0.0082) of the DMN. All the clusters surviving at p < 0.05 (AlphaSim correction). Conclusion: The results suggested that decreased functional connectivity within the DMN and DAN was responsible, at least in part, for the symptom of inattention in ADHD-I patients. Similarly, we believed that the impaired functional connectivity within networks may contribute to the manifestations of ADHD-C patients, including inattention, hyperactivity/impulsivity, and unconscious movements.


Sign in / Sign up

Export Citation Format

Share Document