scholarly journals Theoretical modeling and experimental research on the depth of radial material removal for flexible grinding

Author(s):  
Gang Zheng ◽  
Keyan Chen ◽  
Xiaojian Zhang

Abstract Abrasive belt flap wheel has large elastic deformation, which can better fit the surface of aero-engine blades. Reasonable control of the depth of radial material removal can effectively improve the grinding efficiency and profile accuracy of the blade surface. The depth of radial material removal for flexible grinding was studied through the process parameters in this article. First, the material removal rate model was established based on Hertz elastic contact theory and Preston equation. Then, according to the principle of equivalent material removal volume, a noval approach to determine the depth of radial material removal was proposed. Finally, the experiments for both plane and surface were implemented on a vertical machining center. The results indicate that the proposed method can improve the accuracy and consistency for flexible grinding.

2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2017 ◽  
Author(s):  
Zhigang Wang

The water guided laser micro-jet (LMJ) is a new potential method to machine aero engine parts with much less heat affected area and faster cutting speed than dry laser machining. The focus of this paper is to investigate the energy density and material removal for a dual-laser LMJ system. Then, the effects of dominated parameters on the energy density of LMJ are analyzed. Finally, a mathematical model is developed to describe the relationship between dominant laser parameters with the energy density of LMJ and material removal rate followed by machining case studies of aero engine components.


2006 ◽  
Vol 304-305 ◽  
pp. 555-559 ◽  
Author(s):  
Chang He Li ◽  
Guang Qi Cai ◽  
Shi Chao Xiu ◽  
Q. Li

The material removal rate (MRR) model was investigated in abrasive jet precision finishing (AJPF) with wheel as restraint. When abrasive wore and workpiece surface micro-protrusion removed, the size ratio for characteristic particle size to minimum film thickness gradually diminishing, the abrasive machining from two-body lapping to three-body polishing transition in AJPF with grinding wheel as restraint. In the study, the material removal rate model was established according to machining mechanisms and machining modes from two-body to three-body process transition condition, and active number of particles in grinding zone were calculated and simulated. Experiments were performed in the plane grinder for material removal mechanism and academic models verification. It can be observed from experimental results that the surface morphology change dramatically to a grooved or micro-machined surface with all the grooves aligned in the sliding direction in two-body lapping mode. On the other hand, the surface is very different, consists of a random machining pits with very little sign of any directionality to the deformation in the three-body machining mode. Furthermore, the material removal rate model was found to give a good description of the experimental results.


2017 ◽  
Vol 739 ◽  
pp. 182-186
Author(s):  
Hung Jung Tsai ◽  
Pay Yau Huang ◽  
Chung Ming Tan ◽  
Tang Feng Chang

The hydrolytic properties of LiAlO2 (LAO) are important factors for its applications on LED fabrication. During soft pad polishing process, the H2O in the slurry is deleterious for LAO surface polishing results. The current study develops a material removal rate model for materials with hydrolysis reaction to predict the result of polishing process.The current research conducts the experimental studies to investigate the material removal rate and its mechanism during the soft pad polishing process. In the experimental study, the hydrolytic properties of LAO have been tested to understand the hydrolysis speed with different operation parameters to assist the development of the theoretical model. Also the material removal rates of LAO with hydrolytic property have been measured under different soft pad polishing operating conditions. The experimental results provide the hydrolytic properties of LiAlO2 to understanding of the mechanism on polishing process.


2010 ◽  
Vol 431-432 ◽  
pp. 233-236
Author(s):  
Feng Jiang ◽  
Jian Feng Li ◽  
Jie Sun ◽  
Song Zhang ◽  
Lan Yan

In this study, orthogonal arrays were applied in the design of the experiments and Ti6Al4V end-milling experiments were performed on the DAEWOO machining center. The white light interferometer was used to obtain the average surface roughness (Ra). A quadratic model was proposed to fit the experimental data of the surface roughness. And the fit model was used to optimize the cutting parameters in the given material removal rate. Finally the verification experiments showed good agreement with the estimated results.


2005 ◽  
Vol 127 (1) ◽  
pp. 190-197 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Pay-Yau Huang

Chemical Mechanical Polishing (CMP) is a highly effective technique for planarizing wafer surfaces. Consequently, considerable research has been conducted into its associated material removal mechanisms. The present study proposes a CMP material removal rate model based upon a micro-contact model which considers the effects of the abrasive particles located between the polishing interfaces, thereby the down force applied on the wafer is carried both by the deformation of the polishing pad asperities and by the penetration of the abrasive particles. It is shown that the current theoretical results are in good agreement with the experimental data published previously. In addition to such operational parameters as the applied down force, the present study also considers consumable parameters rarely investigated by previous models based on the Preston equation, including wafer surface hardness, slurry particle size, and slurry concentration. This study also provides physical insights into the interfacial phenomena not discussed by previous models, which ignored the effects of abrasive particles between the polishing interfaces during force balancing.


Sign in / Sign up

Export Citation Format

Share Document