scholarly journals Analysis on Water use Efficiency of Populus Euphratica Forest Ecosystem in Arid Area

Author(s):  
Xue Lianqing ◽  
Fu Fangbing ◽  
Chen Xinfang ◽  
Liu Yuanhong ◽  
Han Qiang ◽  
...  

Abstract Water use efficiency (WUE, the ratio of gross primary productivity (GPP) to evapotranspiration (ET)) reflects the coupled relationship between water loss and carbon gain in the process of plant photosynthetic carbon assimilation. As a dominant tree species in arid area, Populus euphratica plays an important ecological role in slowing desertification. Here, continuous observations of carbon, water and energy fluxes were carried out in Populus euphratica forest with eddy covariance (EC) technique in 2018. We systematically explained the variation characteristics of energy fluxes and WUE at different time scales, and explored the main controlling factors of WUE in drought-stressed environment based on the synchronous meteorological data. Results showed that the carbon exchange of the Populus euphratica forest ecosystem occurred mainly during the growing seasons (April–October). During this period, the entire ecosystem appeared as a carbon sink with the potential to sequester atmospheric carbon dioxide. The average daily WUE was 2.2 g C/kg H2O, which was lower than other temperate forests (2.57–6.07 g C/kg H2O) but higher than grassland, wetland and cropland. We also concluded that an increase in carbon dioxide concentration (CCO2) and air relative humidity (RH) could promote the increase of WUE. Nevertheless, WUE was negatively correlated with air temperature (Ta), photosynthetically active radiation (PAR), and normalized difference vegetation index (NDVI). Additionally, WUE increased under moderate soil water content (SWC), but decreased due to the continuously rising SWC. WUE was more strongly affected by factors affecting water consumption than carbon uptake. Under the conditions of high temperature, strong radiation and low humidity in the summer, the growth rate of ET was much larger than that of GPP. This study not only contributes to our understanding of the carbon, water and energy dynamics of the Populus euphratica forest ecosystem but also provides an important reference for ecological conservation and ecological restoration in arid regions.

Author(s):  
Lianqing Xue ◽  
Fangbing Fu ◽  
Xinfang Chen ◽  
Yuanhong Liu ◽  
Qiang Han ◽  
...  

2003 ◽  
Vol 95 (4) ◽  
pp. 1071-1081 ◽  
Author(s):  
L. H. Allen ◽  
Deyun Pan ◽  
K. J. Boote ◽  
N. B. Pickering ◽  
J. W. Jones

2019 ◽  
Vol 70 (1) ◽  
pp. 781-808 ◽  
Author(s):  
Andrew D.B. Leakey ◽  
John N. Ferguson ◽  
Charles P. Pignon ◽  
Alex Wu ◽  
Zhenong Jin ◽  
...  

The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.


1995 ◽  
Vol 22 (3) ◽  
pp. 461 ◽  
Author(s):  
J Vadell ◽  
C Cabot ◽  
H Medrano

The effects of drought acclimation on the diurnal time courses of photosynthesis and related characters were studied in Trifolium subterraneum L. leaves during two consecutive late spring days. Leaf CO2 assimilation rate and transpiration rate followed irradiance variations in irrigated plants. Under drought, a bimodal pattern of leaf CO2 assimilation rate developed although stomatal conductance remained uniform and low. Instantaneous water-use efficiency was much higher in droughted plants during the early morning and late evening, while during the middle of the day it was close to the value of irrigated plants. Net carbon gain in plants under drought reached 40% of the carbon gain in irrigated plants with a significant saving of water (80%). Average data derived from midday values of leaf CO2 assimilation rates and instantaneous water-use efficiency did not provide good estimates of the daily carbon gain and water-use efficiency for droughted leaves. Coupled with the morphological changes as a result of acclimation to progressive drought, modifications of diurnal patterns of leaf gas exchange rates effectively contribute to a sustained carbon gain during drought. These modifications significantly improve water-use efficiency, mainly by enabling the plant to take advantage of morning and evening hours with high air humidity.


Sign in / Sign up

Export Citation Format

Share Document