scholarly journals Identification Of Exosomal LncRNAs From Peripheral Blood In Spinal Cord Injury Mouse Model

Author(s):  
Jian-an Li ◽  
Ming-peng Shi ◽  
Lin Cong ◽  
Ming-yu Gu ◽  
Yi-heng Chen ◽  
...  

Abstract Background Spinal Cord Injury ( SCI ) is a disease leading to permanent neurological dysfunction. In recent years, exosomes and non-coding RNAs have been considered as potential therapeutic agents for spinal cord injury. Based on ceRNA regulatory network, the role of non-coding RNAs has been paid attention to, and some genes related to the pathological process after spinal cord injury have been found. However, most gene studies only focus on exosomes and non-coding RNAs in spinal cord injury sites, and few genes related to spinal cord injury repair have been found. Objective We aimed to identify exosomes and non-coding RNA in peripheral blood after spinal cord injury, and to predict its role in spinal cord injury according to gene expression profiles. Materials and methods After successful modeling of spinal cord injury, rat exosomes were extracted from peripheral blood.Western-Blot was used to identify exosomes. After RNA was extracted from exosomes, total transcriptome sequencing and differential gene GO and KEGG Pathway analysis were performed. We selected potential genes for quantitative Real-Time PCR (qRT-PCR) assays and predicted their potential regulatory networks. Results The successful establishment of spinal cord injury model was confirmed by Tarlov’s scores, and the extracted exosomes were confirmed by Western-Blot and electron microscopy. Among the significantly differentially expressed lncRNAs, XR_351404, XR_353833, XR_590719, XR_590076, and XR_591455 were associated with miRNA related to repair after spinal cord injury. Conclusions The regulatory effect of this network may play a key role in the repair process of SCI. The differential lncRNAs we found may serve as therapeutic targets and diagnostic biomarkers for SCI.

2021 ◽  
Vol 17 ◽  
pp. 174480692110072
Author(s):  
Debra Morrison ◽  
Anthony A Arcese ◽  
Janay Parrish ◽  
Katie Gibbs ◽  
Andrew Beaufort ◽  
...  

Pain affects most individuals with traumatic spinal cord injury (SCI). Major pain types after SCI are neuropathic or nociceptive, often experienced concurrently. Pain after SCI may be refractory to treatments and negatively affects quality of life. Previously, we analyzed whole blood gene expression in individuals with chronic SCI compared to able-bodied (AB) individuals. Most participants with SCI reported pain (N = 19/28). Here, we examined gene expression of participants with SCI by pain status. Compared to AB, participants with SCI with pain had 468 differentially expressed (DE) genes; participants without pain had 564 DE genes (FDR < 0.05). Among DE genes distinct to participants with SCI with pain, Gene Ontology Biological Process (GOBP) analysis showed upregulated genes were enriched in categories related to T cell activation or inflammation; downregulated genes were enriched in categories related to protein proteolysis and catabolism. Although most participants with pain reported multiple pain types concurrently, we performed a preliminary comparison of gene expression by worst pain problem type. Compared to AB, participants with SCI who ranked neuropathic (N = 9) as worst had one distinct DE gene (TMEM156); participants who ranked nociceptive (N = 10) as worst had 61 distinct DE genes (FDR < 0.05). In the nociceptive group, the GOBP category with the lowest P-value identified among upregulated genes was “positive regulation of T cell activation”; among downregulated genes it was “receptor tyrosine kinase binding”. An exploratory comparison of pain groups by principal components analysis also showed that the nociceptive group was enriched in T-cell related genes. A correlation analysis identified genes significantly correlated with pain intensity in the neuropathic or nociceptive groups (N = 145, 65, respectively, Pearson’s correlation r > 0.8). While this pilot study highlights challenges of identifying gene expression profiles that correlate with specific types of pain in individuals with SCI, it suggests that T-cell signaling should be further investigated in this context.


2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Thyara Caroline Weizenmann ◽  
Aline Marco Viott ◽  
Altina Bruna Barbosa ◽  
Fernanda Wendt ◽  
Flávio Vieira Freitag ◽  
...  

Background: Acute spinal cord injury, a common cause of neurological dysfunction in humans and animals, impairs motor, sensory and autonomic functions and may result in permanent disability. Nandrolone decanoate (ND) is a steroid widely studied for its predominantly anabolic effect and low androgenic potential. Several researchers have described the positive interference of ND in neurological tissue, such as increased synthesis and release of neurotrophic substances, but to date no studies have evaluated the action of this steroid in acute spinal cord injury. The aim of this study was therefore to evaluate the effect of ND in rats subjected to acute spinal cord injury. Materials, Methods & Results: Thirty-two young adult Wistar rats (Rattus norvegicus), weighing between 240 and 260 g, were divided into three groups. The first group (GNAN) (n=13) was subjected to acute spinal cord injury and treated with ND; the control group (GCON) (n=13) was subjected to spinal cord injury without treatment; and the third group (GLAM) (n=6) underwent laminectomy without prior spinal cord injury, in order to control changes caused by the procedure. A 20 g metal device was released from a height of 25 cm to produce the spinal cord injury. After exposing the spinal canal, a 2-mm diameter metal rod was placed directly in contact with the spinal cord, and when the weight was released, the rod was struck, causing the spinal cord injury. An intramuscular injection of 2 mg/kg of ND was administered the immediate postoperative period. The animals were assessed to ascertain the recovery of their motor function on five occasions, namely at 24 h, 48 h, 72 h, 7 and 14 days after undergoing spinal cord injury. This assessment was performed using the Basso, Beattie and Bresnahan (BBB) model. The animals were euthanized 14 days post-op and fragments of the spinal cord and urinary bladder were collected for histological evaluation. Discussion: The animals subjected to spinal cord injury presented paraplegia, failing to score on the BBB scale in the first three assessments. Starting 7 days after surgery, the GNAN (0-13) and GCON (0-5) groups gradually began showing locomotor improvements, with scale variations. On day 14 after spinal cord injury, 22% of the animals in GNAN and 11% in GCON had failed to recover their locomotor function, scoring zero on the BBB scale. After spinal cord injury, all the animals showed urine retention. The urinary function returned on average on day 5 post surgery, with no significant difference between the groups. The locomotor assessment of the animals subjected to acute spinal cord injury revealed that the injury varied in intensity in GNAN and GCON, with signs of pelvic limb paraplegia and asymmetric non-ambulatory paraparesis. Time was a determining factor in the clinical evolution of the animals, with no evidence of the influence of ND. The histological findings revealed variations in the intensity of the injury, with a tendency for lower intensity in the cranial and epicentral segments of the lesion in the animals subjected to ND treatment, albeit without statistically significant evidence (P ≥ 0.05). The spinal cord assessments of the GLAM group indicated that the surgical procedure did not cause histological alterations, since the normal architecture of the neural tissue was preserved. The histopathological evaluations of the urinary bladder revealed an inflammatory response characterized by lymphohistiocytosis and neutrocytosis in the animals of GNAN and GCON, without interference of ND in the change (P ≥ 0.05). The method to elicit spinal cord injury reproduced functional, sensory and motor incapacity heterogeneously in rats. In the dose evaluated here, ND did not significantly influence the return of locomotor function and the intensity of spinal cord histopathological alterations.   


2020 ◽  
Author(s):  
Xin Ye ◽  
Yilei Chen ◽  
Jiasheng Wang ◽  
Jian Chen ◽  
Ying Yao ◽  
...  

Abstract Background: Traumatic spinal cord injury (SCI) causes high rates of worldwide morbidity because of the complex secondary injury. Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs, which have recently been recognized as important regulators of gene expression and pathological processes. In this study, we have attempted to elucidate the expression profiles of circRNAs in a mouse model of SCI and comprehensively understand vascular endothelial proliferation, migration and angiogenesis in the early stage of secondary injury.Methods: Deep RNA sequencing (RNA-seq) and bioinformatic analysis including GO enrichment analysis, KEGG pathway analysis and circRNA-miRNA-mRNA network construction were performed to investigate the expression patterns of circRNAs in mouse spinal cord after SCI (n= 3 per group) for three days and explore the differentially expressed circRNAs related to vascular endothelial proliferation, migration and angiogenesis. Results: Total of 1288 circRNAs were altered (>2-fold change, p<0.05) in the spinal cord after SCI, including 991 were upregulated and 297 were downregulated. Meanwhile we constructed a circRNA-mRNA network to predict their functions for circRNAs can act as “miRNA sponges”,. We next analyzed the altered circRNAs related to vascular endothelial proliferation, migration and angiogenesis by GO and KEGG analyses. 121 circRNAs were found to correlating to vascular endothelial proliferation,migration and angiogenesis in spinal cord after SCI. Conclusions: Our results reveal that circRNAs locally regulate their related protein-gene expression and play key roles in the vascular endothelial proliferation, migration and angiogenesis of SCI.


Sign in / Sign up

Export Citation Format

Share Document