scholarly journals Nitrogen availability controls plant carbon storage with warming

Author(s):  
Guiyao Zhou ◽  
César Terrer ◽  
Bruce Hungate ◽  
Natasja van Gestel ◽  
Xuhui Zhou ◽  
...  

Abstract Plants may slow global warming through enhanced growth, because increased levels of photosynthesis stimulate the land carbon (C) sink. However, the key drivers determining responses of plants to warming remain unclear, causing uncertainty in climate projections. Using meta- analysis, we show that the effect of experimental warming on plant biomass is best explained by soil nitrogen (N) availability. Warming-induced changes in total, aboveground and belowground biomass all positively correlated with soil C:N ratio, an indicator of soil N availability. In factorial N × warming experiments, warming increased plant biomass more strongly under low N than under high N availability. Together, these results suggest that warming stimulates plant C storage most strongly in ecosystems where N limits plant growth. Thus, incorporating the soil N status of ecosystems into Earth system models may improve predictions of future carbon-climate feedbacks.

2021 ◽  
Author(s):  
Guiyao Zhou ◽  
César Terrer ◽  
Bruce Hungate ◽  
Natasja van Gestel ◽  
Xuhui Zhou ◽  
...  

Abstract Plants may slow global warming through enhanced growth, thereby stimulating the land carbon (C) sink. However, the key drivers determining responses of plants to warming remain unclear, causing uncertainty in climate projections. Using meta-analysis, we show that the effect of experimental warming on plant biomass is best explained by soil C:N ratio, an indicator of soil nitrogen (N) availability. Our results suggest that warming stimulates plant C storage most strongly in ecosystems where N limits plant growth, and may inform model predictions of warming may improve by considering spatially explicitly .


2015 ◽  
Vol 12 (23) ◽  
pp. 7299-7313 ◽  
Author(s):  
J. van Lent ◽  
K. Hergoualc'h ◽  
L. V. Verchot

Abstract. Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha−1 yr−1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3− / [NO3−+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability and WFPS were the main factors explaining changes in N2O emissions following LUC, therefore it is important that experimental designs monitor their spatio-temporal variation. Gaps in the literature on N oxide fluxes included geographical gaps (Africa, Oceania) and LU gaps (degraded forest, wetland (notably peat) forest, oil palm plantation and soy cultivation).


2019 ◽  
Vol 9 (21) ◽  
pp. 4481 ◽  
Author(s):  
Figueiredo ◽  
Coser ◽  
Moreira ◽  
Leão ◽  
Vale ◽  
...  

Biochar has been presented as a multifunctional material with short- and long-term agro-environmental benefits, including soil organic matter stabilization, improved nutrient cycling, and increased primary productivity. However, its turnover time, when applied to soil, varies greatly depending on feedstock and pyrolysis temperature. For sewage sludge-derived biochars, which have high N contents, there is still a major uncertainty regarding the influence of pyrolysis temperatures on soil carbon mineralization and its relationship to soil N availability. Sewage sludge and sewage sludge-derived biochars produced at 300 °C (BC300), 400 °C (BC400), and 500 °C (BC500) were added to an Oxisol in a short-term incubation experiment. Carbon mineralization and nitrogen availability (N-NH4+ and N-NO3−) were studied using a first-order model. BC300 and BC400 showed higher soil C mineralization rates and N-NH4+ contents, demonstrating their potential to be used for plant nutrition. Compared to the control, the cumulative C-CO2 emissions increased by 60–64% when biochars BC300 and BC400 were applied to soil. On the other hand, C-CO2 emissions decreased by 6% after the addition of BC500, indicating the predominance of recalcitrant compounds, which results in a lower supply of soil N-NH4+ (83.4 mg kg−1) in BC500, being 67% lower than BC300 (255.7 mg kg−1). Soil N availability was strongly influenced by total N, total C, C/N ratio, H, pore volume, and specific surface area in the biochars.


2016 ◽  
Author(s):  
Cari D. Ficken ◽  
Justin P. Wright

Abstract. Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the south eastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition; we further hypothesize that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. We found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5–25 times background levels. We conclude that a temporary dampening of vegetation demand for N following fire may contribute to the observed increases in inorganic N availability.


HortScience ◽  
2011 ◽  
Vol 46 (9) ◽  
pp. 1294-1297 ◽  
Author(s):  
M. Lenny Wells

Nitrogen (N) fertilizer application to plants at rates not adjusted for the N contribution from soil N availability may result in overapplication of fertilizer. Further understanding of proper timing of N applications based on soil N dynamics and plant demand can be valuable information for the efficient use of fertilizer N. The present study measures soil N dynamics in a pecan orchard under various N fertilizer regimes on a southeastern U.S. Coastal Plain soil. The following treatments were evaluated: 1) crimson clover (Trifolium incarnatum L.); 2) poultry litter; 3) crimson clover + poultry litter; 4) ammonium nitrate (NH4NO3); and 5) untreated control. Crimson clover provided from 20 to 75 kg·ha−1 N over the course of the two growing seasons; however, most of the available N from crimson clover became available late in the growing season. As a result, supplemental N may be required in spring where crimson clover is used as an orchard cover crop. Poultry litter, with and without clover, provided available N consistently throughout the growing season with more N becoming available later in the season than earlier. This suggests that poultry litter applications for pecan should be timed before budbreak. Under optimum environmental conditions, N from NH4NO3 is most available within the first 30 days of application. Thus, it appears that synthetic fertilizer applications using NH4NO3 as the N source should be targeted at or 2 to 3 weeks after pecan budbreak.


2013 ◽  
Vol 59 (No. 6) ◽  
pp. 235-240 ◽  
Author(s):  
Bordoloi LJ ◽  
Singh AK ◽  
Manoj-Kumar ◽  
Patiram ◽  
S. Hazarika

Plant&rsquo;s nitrogen (N) requirement that is not fulfilled by available N in soil has to be supplied externally through chemical fertilizers. A reliable estimate of soil N-supplying capacity (NSC) is therefore essential for efficient fertilizer use. In this study involving a pot experiment with twenty acidic soils varying widely in properties, we evaluated six chemical indices of soil N-availability viz. organic carbon (C<sub>org</sub>), total N (N<sub>tot</sub>), acid and alkaline-KMnO<sub>4</sub> extractable-N, hot KCl extractable-N (KCl-N) and phosphate-borate buffer extractable-N (PBB-N), based on their strength of correlation with available-N values obtained through aerobic incubation (AI-N) and anaerobic incubation (ANI-N), and also with the dry matter yield (DMY), N percentage and plant (maize) N uptake (PNU). In general, the soils showed large variability in NSC as indicated by variability in PNU which ranged from 598 to 1026 mg/pot. Correlations of the N-availability indices with AI-N and ANI-N decreased in the order: PBB-N (r = 0.784** and 0.901**) &gt; KCl-N (r = 0.773** and 0.743**) &gt; acid KMnO<sub>4</sub>-N (r = 0.575** and 0.651**) &ge; C<sub>org</sub> (r = 0.591** and 0.531**) &ge; alkaline KMnO<sub>4</sub>-N (r = 0.394** and 0.548**) &gt; N<sub>tot</sub> (r = 0.297** and 0.273*). Of all the indices evaluated, PBB-N showed the best correlations with plant parameters as well (r = 0.790** and 0.793** for DMY and PNU, respectively). Based on the highest correlations of PBB-N with biological indices as well as plant responses, we propose PBB-N as an appropriate index of N-availability in the acidic soils of India and other regions with similar soils.


2007 ◽  
Vol 85 (10) ◽  
pp. 976-985 ◽  
Author(s):  
Amy C. Euliss ◽  
Melany C. Fisk ◽  
S. Coleman McCleneghan ◽  
Howard S. Neufeld

High light requirements limit the distribution of several rare plant species endemic to the southern Appalachian region. We studied the influence of light and nitrogen availability on carbon allocation and morphology in one of these species, Houstonia montana Small. Insights into growth and nutrition of H. montana are needed for predicting how it will respond to ongoing changes in its environment associated with atmospheric nitrogen deposition and resulting from succession and (or) management of grassy-bald habitats in which it occurs. We hypothesized that low light constrains belowground allocation, and that elevated N availability reduces limitations to aboveground growth at low light. We tested growth and mycorrhizal colonization of H. montana in response to interactions of light and N availability in a greenhouse experiment. Shade reduced plant biomass, root:shoot ratios, and mycorrhizal colonization, and increased specific leaf area (area/mass). Elevated N reduced root:shoot ratios and mycorrhizal colonization. Under low light, N addition increased specific root length (length/mass) and foliar chlorophyll. We found support for the hypotheses that low light and high N reduce belowground allocation in H. montana. However, we did not find that high N significantly alleviates limitation to plant growth in the shade, despite changes in allocation, morphology, and chemistry that were consistent with more efficient use of C for aboveground growth. Thus, variation in the soil N availability is unlikely to have a marked effect on the ability of H. montana to tolerate shade in its native habitat.


2011 ◽  
Vol 91 (4) ◽  
pp. 493-501 ◽  
Author(s):  
K. Liu ◽  
A. M. Hammermeister ◽  
P. R. Warman ◽  
C. F. Drury ◽  
R. C. Martin

Liu, K., Hammermeister, A. M., Warman, P. R., Drury, C. F. and Martin, R. C. 2011. Assessing soil nitrogen availability in contrasting cropping systems at the end of transition to organic production. Can. J. Soil Sci. 91: 493–501. Quantifying soil nitrogen (N) availability at the end of a transition period for converting conventional fields to organic fields could enhance N management during the subsequent organic crop production phase. Soil total N (Ntot), KCl extractable N (KCl N) and potentially mineralizable N (No) were determined at the end of a 3-yr transition period. A complementary greenhouse ryegrass N bioassay was conducted using soils collected from the treated field plots. The field experiment consisted of six cropping systems comprising two N inputs (legume-based vs. manure-based) and three forage cropping treatments (0, 1 or 2 yr of forage in 4-yr rotations). The N input treatments consisted of alfalfa meal in the legume-based cropping system (LBCS) and composted beef manure in the manure-based cropping system (MBCS). Orthogonal contrasts suggested no differences in Ntot or KCl N either between LBCS and MBCS or between no-forage and forage cropping systems. However, in the greenhouse study, high cumulative N inputs in the MBCS resulted in significantly higher ryegrass N uptake and potentially mineralizable soil N than in the LBCS. Ryegrass N uptake ranged from 101 to 139 kg ha−1, which should be an adequate N supply for the succeeding potato crop. In the greenhouse, a ryegrass N bioassay effectively identified the differences in soil N availability. Ryegrass N uptake was linearly related to cumulative soil amendment N inputs but had no apparent relationship with N o. A systems approach provided a good assessment of N availability at the end of the transition period to organic production.


Author(s):  
Jessica L. Stoeckli ◽  
Mehdi Sharifi ◽  
David C. Hooker ◽  
Ben W. Thomas ◽  
Froogh Khaefi ◽  
...  

Predicting the soil available nitrogen (N) to grain corn over a growing season in humid temperate regions is the key for improving fertilizer N recommendations. The objective of this study was to evaluate a suite of soil-N tests to predict soil N availability to grain corn over two growing seasons at 13 individual sites with long-term history of synthetic N fertilization in Ontario, Canada (13 site-years). At each site, fertilizer N was applied at various rates (0-224 kg N ha-1) to determine the crop response to N fertilizer, relative yield (RY) and the most economic rate of N (MERN). Across the entire dataset, water-extractable mineral N (WEMN) was the only soil test that strongly correlated to both RY (r = 0.74**) and MERN (r = -0.56*) indicating that in grain corn fields with long-term history of N fertilization, mineral forms of N in soil solution can be used for fertilizer N recommendations in southern and eastern Ontario. We also provide evidence that grouping soils based on clay content could further refine fertilizer-N recommendations for grain corn in Ontario. A multi-year validation of the WEMN test with more field sites and development of a fertilizer recommendation table for this soil test are recommended.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 383
Author(s):  
Zhan Chen ◽  
Siyuan Ye ◽  
Jixin Cao ◽  
He Shang

There are very few studies about the effects of relatively higher CO2 concentration (e.g., 1000 μmol·mol−1) or plus N fertilization on woody plants. In this study, Schima superba seedings were exposed to ambient or eCO2 (550, 750, and 1000 μmol·mol−1) and N fertilization (0 and 10 g·m−2·yr−1, hereafter: low N, high N, respectively) for one growth season to explore the potential responses in a subtropical site with low soil N availability. N fertilization strongly increased leaf mass-based N by 118.38%, 116.68%, 106.78%, and 138.95%, respectively, in different CO2 treatments and decreased starch, with a half reduction in leaf C:N ratio. Leaf N was significantly decreased by eCO2 in both low N and high N treatments, and N fertilization stimulated the decrease of leaf N and mitigated the increase of leaf C:N by eCO2. In low N treatments, photosynthetic rate (Pn) was maximized at 733 μmol·mol−1 CO2 in August and September, while, in high N treatments, Pn was continuously increased with elevation of CO2. N fertilization significantly increased plant biomass especially at highly elevated CO2, although no response of biomass to eCO2 alone. These findings indicated that N fertilization would modify the response of S. superba to eCO2.


Sign in / Sign up

Export Citation Format

Share Document