scholarly journals Nitrogen availability controls plant carbon storage with warming

Author(s):  
Guiyao Zhou ◽  
César Terrer ◽  
Bruce Hungate ◽  
Natasja van Gestel ◽  
Xuhui Zhou ◽  
...  

Abstract Plants may slow global warming through enhanced growth, thereby stimulating the land carbon (C) sink. However, the key drivers determining responses of plants to warming remain unclear, causing uncertainty in climate projections. Using meta-analysis, we show that the effect of experimental warming on plant biomass is best explained by soil C:N ratio, an indicator of soil nitrogen (N) availability. Our results suggest that warming stimulates plant C storage most strongly in ecosystems where N limits plant growth, and may inform model predictions of warming may improve by considering spatially explicitly .

2021 ◽  
Author(s):  
Guiyao Zhou ◽  
César Terrer ◽  
Bruce Hungate ◽  
Natasja van Gestel ◽  
Xuhui Zhou ◽  
...  

Abstract Plants may slow global warming through enhanced growth, because increased levels of photosynthesis stimulate the land carbon (C) sink. However, the key drivers determining responses of plants to warming remain unclear, causing uncertainty in climate projections. Using meta- analysis, we show that the effect of experimental warming on plant biomass is best explained by soil nitrogen (N) availability. Warming-induced changes in total, aboveground and belowground biomass all positively correlated with soil C:N ratio, an indicator of soil N availability. In factorial N × warming experiments, warming increased plant biomass more strongly under low N than under high N availability. Together, these results suggest that warming stimulates plant C storage most strongly in ecosystems where N limits plant growth. Thus, incorporating the soil N status of ecosystems into Earth system models may improve predictions of future carbon-climate feedbacks.


2007 ◽  
Vol 85 (10) ◽  
pp. 976-985 ◽  
Author(s):  
Amy C. Euliss ◽  
Melany C. Fisk ◽  
S. Coleman McCleneghan ◽  
Howard S. Neufeld

High light requirements limit the distribution of several rare plant species endemic to the southern Appalachian region. We studied the influence of light and nitrogen availability on carbon allocation and morphology in one of these species, Houstonia montana Small. Insights into growth and nutrition of H. montana are needed for predicting how it will respond to ongoing changes in its environment associated with atmospheric nitrogen deposition and resulting from succession and (or) management of grassy-bald habitats in which it occurs. We hypothesized that low light constrains belowground allocation, and that elevated N availability reduces limitations to aboveground growth at low light. We tested growth and mycorrhizal colonization of H. montana in response to interactions of light and N availability in a greenhouse experiment. Shade reduced plant biomass, root:shoot ratios, and mycorrhizal colonization, and increased specific leaf area (area/mass). Elevated N reduced root:shoot ratios and mycorrhizal colonization. Under low light, N addition increased specific root length (length/mass) and foliar chlorophyll. We found support for the hypotheses that low light and high N reduce belowground allocation in H. montana. However, we did not find that high N significantly alleviates limitation to plant growth in the shade, despite changes in allocation, morphology, and chemistry that were consistent with more efficient use of C for aboveground growth. Thus, variation in the soil N availability is unlikely to have a marked effect on the ability of H. montana to tolerate shade in its native habitat.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 383
Author(s):  
Zhan Chen ◽  
Siyuan Ye ◽  
Jixin Cao ◽  
He Shang

There are very few studies about the effects of relatively higher CO2 concentration (e.g., 1000 μmol·mol−1) or plus N fertilization on woody plants. In this study, Schima superba seedings were exposed to ambient or eCO2 (550, 750, and 1000 μmol·mol−1) and N fertilization (0 and 10 g·m−2·yr−1, hereafter: low N, high N, respectively) for one growth season to explore the potential responses in a subtropical site with low soil N availability. N fertilization strongly increased leaf mass-based N by 118.38%, 116.68%, 106.78%, and 138.95%, respectively, in different CO2 treatments and decreased starch, with a half reduction in leaf C:N ratio. Leaf N was significantly decreased by eCO2 in both low N and high N treatments, and N fertilization stimulated the decrease of leaf N and mitigated the increase of leaf C:N by eCO2. In low N treatments, photosynthetic rate (Pn) was maximized at 733 μmol·mol−1 CO2 in August and September, while, in high N treatments, Pn was continuously increased with elevation of CO2. N fertilization significantly increased plant biomass especially at highly elevated CO2, although no response of biomass to eCO2 alone. These findings indicated that N fertilization would modify the response of S. superba to eCO2.


1983 ◽  
Vol 13 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Roy C. Sidle ◽  
Charles G. Shaw III

Nutrient status was evaluated in the upper 15 cm of three microsite types (rotten wood, exposed mineral soil, and undisturbed duff) common in old-growth western hemlock – Sitka spruce (Tsugaheterophylla (Raf.) Sarg.) – (Piceasitchensis (Bong.) Carr.) clear-cuts. Rotten wood had significantly wider C:N ratio (>100:1) than either undisturbed duff (36:1) or exposed mineral soil (31:1), indicating lower nitrogen availability in rotten wood. Higher levels of inorganic [Formula: see text] in <2 mm fraction of rotten wood compared with the 2- to 9.4-mm fraction indicate that N availability increases as decay advances. Available P was low and could be a major factor limiting growth in all microsites. Exchangeable Mg was relatively low (0.0025 mg/cm3) in exposed mineral soil. Microsite nutrient expression on a volumetric rather than a gravimetric basis better represents availability of nutrients to planted seedlings.


2021 ◽  
Author(s):  
Song Wang ◽  
Quan Quan ◽  
Cheng Meng ◽  
Weinan Chen ◽  
Yiqi Luo ◽  
...  

Abstract Aims Terrestrial ecosystem carbon (C) uptake is remarkably regulated by nitrogen (N) availability in the soil. However, the coupling of C and N cycles, as reflected by C:N ratios in different components, has not been well explored in response to climate change. Methods Here, we applied a data assimilation approach to assimilate 14 data sets collected from a warming experiment in an alpine meadow in China into a grassland ecosystem model. We attempted to evaluate how experimental warming affects C and N coupling as indicated by constrained parameters under ambient and warming treatments separately. Important Findings The results showed that warming increased soil N availability with decreased C:N ratio in soil labile C pool, leading to an increase in N uptake by plants. Nonetheless, C input to leaf increased more than N, leading to an increase and a decrease in the C:N ratio in leaf and root, respectively. Litter C:N ratio was decreased due to the increased N immobilization under high soil N availability or warming-accelerated decomposition of litter mass. Warming also increased C:N ratio of slow soil organic matter pool, suggesting a greater soil C sequestration potential. As most models usually use a fixed C:N ratio across different environments, the divergent shifts of C:N ratios under climate warming detected in this study could provide a useful benchmark for model parameterization and benefit models to predict C-N coupled responses to future climate change.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


1998 ◽  
Vol 78 (3) ◽  
pp. 563-572 ◽  
Author(s):  
V. Jowkin ◽  
J. J. Schoenau

Nitrogen availability to a spring wheat crop was examined in the cropping season in a side-by-side comparison of no-till (first year) and tillage fallow in an undulating farm field in the Brown soil zone in southwestern Saskatchewan. Thirty different sampling points along a grid in each tillage landscape were randomly selected, representing 10 each of shoulder, footslope and level landscape positions. Nitrogen availability was studied i) by profile inorganic N content ii) by crop N uptake and yield of spring wheat (Triticum aestivum L.) and iii) by 15N tracer technique and in situ burial of anion exchange resin membranes (AEM).Pre-seeding available moisture content of the surface soil samples was significantly higher under no-till compared with tillage fallow. However, no significant differences in pre-seeding profile total inorganic N, crop N uptake and yield were observed between the treatments. At the landform scale, shoulder positions of the respective tillage systems had lower profile inorganic N, crop N uptake and yield compared with other slope positions. Soil N supply power, as determined by 15N tracer and AEM techniques, was not significantly different between the tillage treatments, indicating that N availability is not likely to be greatly affected in initial years by switching to no-till fallow in these soils under normal moisture conditions. Key words: Summerfallow, landscape, nitrogen, wheat


2008 ◽  
Vol 159 (10) ◽  
pp. 326-335 ◽  
Author(s):  
Niklaus E. Zimmermann ◽  
Harald Bugmann

New IPCC climate projections suggest drastic changes in future climate. We discuss two commonly used modeling approaches, statistical distribution models and dynamic forest succession models, as they are suitable for assessing expected effects of climate change on the tree species distribution in Switzerland and for assisting management decisions in forestry. We discuss the basic assumptions and the strengths and weaknesses of the two approaches, without an understanding of which it is impossible to fully judge the outcome of modeling exercises. We give an overview of results from applying these two modeling approaches in Switzerland and in the Alps and discuss their appropriate use. We believe that these models are an important basis for decision making in the face of highly uncertain development of future climate. Nonetheless, models do not represent an exact copy of reality. Plausibility analyses are necessary in order to assess the results' usefulness and precision. Sensitivity analyses and a critical comparison of model results with expert knowledge of current forests, long measurement time series and other data are important. Also, dialog with practitioners and managers is not only important for checking the plausibility of model predictions under current conditions, but may also serve to improve the evaluation of future projections. We propose to apply models to the whole of Switzerland and to many tree species. Such a concerted national analysis may serve the adaptive management of forests and may strengthen dialog between researchers and practitioners.


2019 ◽  
Author(s):  
Micah N. Scholer ◽  
Matt Strimas-Mackey ◽  
Jill E. Jankowski

AbstractTropical birds are purported to be longer lived than temperate species of similar size, but it has not been shown whether avian survival rates covary with a latitudinal gradient worldwide. Here, we perform a global-scale meta-analysis to investigate the extent of the latitudinal survival gradient. We modeled survival as a function of latitude for the separate northern and southern hemispheres, and considered phylogenetic relationships and extrinsic (climate) and intrinsic (life history) predictors hypothesized to moderate these effects. Using a database of 1,004 estimates from 246 studies of avian survival, we demonstrate that in general a latitudinal survival gradient exists in the northern hemisphere, is dampened or absent for southern hemisphere species, and that survival rates of passerine birds largely account for these trends. We found no indication that the extrinsic climate factors were better predictors of survival than latitude alone, but including species’ intrinsic traits improved model predictions. Notably, species with smaller clutch size and larger body mass showed higher survival. Our results illustrate that while some tropical birds may be longer lived than their temperate counterparts, the shape of the latitude-survival gradient differs by geographic region and is strongly influenced by species’ intrinsic traits.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 235 ◽  
Author(s):  
X. Y. Liu ◽  
M. Rezaei Rashti ◽  
M. Esfandbod ◽  
B. Powell ◽  
C. R. Chen

Liming has been widely used to decrease soil acidity, but its effects on soil nitrogen (N) availability and microbial processes in sugarcane fields are largely unknown. Adjacent sugarcane soils at 26 months after liming (26ML), 14 months after liming (14ML) and with no lime amendment (CK) in Bundaberg, Australia, were selected to investigate the effect of liming on soil N bioavailability and microbial activity in a long-term subtropical sugarcane cropping system. Liming in both 14ML and 26ML treatments significantly increased soil pH (by 1.2–1.4 units) and exchangeable Ca2+ (>2-fold) compared with the CK treatment. The lower concentrations of hot water extractable organic carbon (C) and total N and ammonium-N in the 14ML, compared with the CK and 26ML treatments, can be attributed to the absence of trash blanket placement in the former. Enhanced microbial immobilisation due to improved soil pH by liming (14ML and 26ML treatments) led to increased soil microbial biomass C and N, particularly in the presence of a trash blanket (26 ML treatment), but decreased soil respiration and metabolic quotient indicated that acidic stress conditions were alleviated in the liming treatments. Soil pH was the main factor governing soil enzyme activities, with an overall decrease in all enzyme activities in response to liming. Overall, liming and trash blanket practices improved sugarcane soil fertility. Further study is warranted to investigate the shifts in soil microbial community composition and the diversity and abundance of N-associated functional genes in response to liming in sugarcane fields.


Sign in / Sign up

Export Citation Format

Share Document