scholarly journals Effect of Desiccation and Storage Environment on Longevity of Ehretia Cymosa Thonn. Seeds.

2020 ◽  
Author(s):  
Peter Murithi Angaine ◽  
Stephen Muriithi Ndungú ◽  
Alice Adongo Onyango ◽  
Jesse Omondi Owino

Abstract Background: Globally, forestry faces challenges in the availability of seeds due to limited knowledge on seed handling of various species. Forestry seeds are constantly being reviewed and classified as either recalcitrant, intermediate, or orthodox based on their storage behavior. It is essential to understand the tree seed storage behavior to maintain seed viability and thus minimize seed losses. There is scanty literature combining factors of seed moisture content (6%, 9%, 12%, 15%, and 20%), seed storage temperature (20oC, 5oC and -20oC), seed storage duration (1, 4, 9 and 12 months), and germination in different sites with varying environmental variables. Ehretia cymosa is important in the Afromontane forestry landscape as a medicinal, rehabilitation, and conservation species. This study conducted desiccation and storage studies and their influence on the viability of E. cymosa seeds. The study sought to determine the optimum conditions for the storage of Ehretia cymosa that maintains viability. Results: This study observed that E. cymosa dried to seed moisture content of 6%, stored for 12 months at 20oC and sown in the laboratory had the highest germination performance (27.6 ± 3.18%) (p<0.05). Conclusion: This confirms that E.cymosa seeds exhibit orthodox storage behavior. The authors recommend longer storage studies (>12months) to determine the actual longevity of the seeds of this species. The significance of these results would be useful for foresters and farmers that would need to use this species for various purposes.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Suma ◽  
Kalyani Sreenivasan ◽  
A. K. Singh ◽  
J. Radhamani

The role of relative humidity (RH) while processing and storing seeds ofBrassicaspp. andEruca sativawas investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species ofBrassicawas also evaluated. The samples were stored at40±2°Cin sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour,B. rapaandB. junceawere better performers thanB. napusandEruca sativa.


2016 ◽  
Vol 34 (3) ◽  
pp. 219
Author(s):  
Ari Wahyuni ◽  
M. R. Suhartanto ◽  
Abdul Qadir

<p>Soybean seed viability declines during seed storage. Soybean seed deteriorates rapidly, affected by its high protein content and often high humidity in the tropical environment. This research was aimed to develop dynamic model of soybean seed viability in an open storage. The study was conducted in three stages, namely: 1) desk study, 2) seed storage experiment, 3) development of seed storage model, simulation and verification of the model. The second stage of the experiment consisted of soybean seed storing and germination testing using completely randomized design. Treatments were three initial moisture content (7-8%, 9-10% and 11-12%) and four varieties of soybean (Anjasmoro, Wilis, Detam-1 and Detam-2). The results showed that the seed behaviour during storage period were affected by initial seed moisture content, initial viability, varieties and environmental condition. Therefore, seed moisture content, initial viability and varieties may be used as input model. Moisture content, integreting seed respiration, electric conductivity and seed storability vigor (VDSDB) were as model output. Simulation of Seed Storability Vigor Prediction Model with Model Construction Layer-Stella (MCLS) using relative humidity (RH), temperature, seed permeability, initial moisture content and initial viability as input model could logically predict the seed moisture content and seed storability vigor (VDSDB).</p>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 490c-490
Author(s):  
Jian Fang ◽  
Frank Moore ◽  
Eric E. Roos ◽  
Christina Walters

Seed moisture content (MC) changes depending upon relative humidity (RH) and temperature (T). This relationship was revealed by studying the interaction of RH and T at equilibrium. Maize, cucumber, onion, lettuce, watermelon, and pea seeds were equilibrated over various saturated salt solutions (1% to 93% RH) at temperatures from 5 to 50 °C. Five-hundred-eleven subset models were selected from a complete third-order model MC = 0 + 1*RH + 2*T + 3*RH2 + 4*T2 + 5*RH*T + 6*RH3 + 7*T3 + 8*RH*T2 + 9*RH2*T using Mallows' minimum Cp as the selection criterion. All six best subset models were found to have the same functional form, MC0 + 1 = *RH + 2*T + *RH2 + 5*RH*T + 6*RH + 9*RH2*T. Coefficients had essentially the same respective values among species, except for the onion and pea models (P ≤ 0.05). All models indicated that seed MC increased as RH increased and decreased as temperature increased. A previous paper (Vertucci and Roos, 1990) indicated that optimum RH for orthodox seed storage is between 19% and 27%. Using these models, the range for the optimum moisture content for storage of most orthodox seeds can be quickly calculated for any given storage temperature.


2005 ◽  
Vol 23 (1) ◽  
pp. 29-32
Author(s):  
Sandra M. Reed

Abstract Dogwood producers occasionally face a shortage of flowering dogwood seed. Storing excess seed during years when seed are abundant would allow growers to stabilize their seed supply. This study was conducted to evaluate the effects of seed moisture and storage temperature on the viability of stored flowering dogwood seed. Seed were collected in Fall 1999 and 2000, dried to 6, 10 and 14% moisture content, and stored at 22, 5 and −20C (72, 41 and −4F) for 1, 2 and 3 years. Following storage, seed were cold stratified and sown in a greenhouse. Percent germination and seedling dry weight were recorded. Seed stored at 22C (72F) quickly lost viability. At 5C (41F), seed moisture content was critical, with seed dried to 14% moisture content germinating poorly after 2 years and failing to germinate after 3 years in storage. In general, storage at −20C (−4F) was superior to storage at 5C (41F). Seed moisture content was not as critical at −20C (−4F) as it was at 5C (41F), but may become more important if length of storage is extended past 3 years. Based on the results of this study, it is recommended that seed be dried to 6 to 10% moisture prior to storage, stored in air-tight containers, and stored in a −20C (−4F) freezer.


2016 ◽  
Vol 23 (2) ◽  
pp. 73-78
Author(s):  
T. Sabu ◽  
P.S. Shameer ◽  
Chitra Rajeswary ◽  
N. Mohanan ◽  
C. Anilkumar

Seeds of Garcinia talbotii remained viable hardly for two weeks in open room conditions. As part of ex-situ conservation of Garcinia talbotii, seeds longevity was studied since seeds are the main propagule. For this, the relationship of seed viability with respect to different moisture content and storage temperature were analyzed. Seed storage behaviour is also investigated. Being recalcitrant, seeds are desiccation sensitive as well as chilling sensitive. During hermetic storage of seeds at 300C /70 % RH seeds retained viability about 6 months.


2020 ◽  
Vol 48 (2) ◽  
pp. 201-207
Author(s):  
Y.K. Fan ◽  
M. Liu ◽  
J.X. Hu ◽  
M.Y. Ji ◽  
Q.Y. Lan

The present study examined the effect of temperature (15, 20, 25, 30 and 20/30°C) on germination and the storage behaviour of freshly harvested mature seeds of Calamus palustris var. cochinchinensis. Seed desiccation tolerance and the effects of storage temperature (4 and 15°C), perlite water content (120, 180 and 240%) and seed moisture content (27.8, 38.2 and 49.2%) on viability were observed. Seeds had a higher germination at 25°C (88.3%) than at the other tested temperatures. Germination decreased as the seed moisture content decreased during desiccation. The germination of seeds stored at 15°C was higher than that of seeds stored at 4°C. Germination of seeds stored at 15 and 4°C was <65% and with extension of storage time, the germination decreased, indicating that neither temperature can be used for long-term conservation. For short-term storage, the seeds can be stored at 15°C with perlite with 180% water content in plastic bottles or at 15°C with 49.2% moisture content sealed inside aluminum foil bags.


HortScience ◽  
2007 ◽  
Vol 42 (6) ◽  
pp. 1436-1439 ◽  
Author(s):  
H.J. Hill ◽  
Jesse D. Cunningham ◽  
Kent J. Bradford ◽  
A.G. Taylor

The Ellis-Roberts seed viability equation is used to predict seed survival after storage at specified temperatures and moisture contents. Seed priming, which can break dormancy and accelerate germination, can also reduce seed storage life. Because primed seeds were not used in developing the Ellis-Roberts equation, the reciprocal nature of specific seed moisture content (MC, fresh weight basis) and temperatures that applies to nonprimed lettuce (Lactuca sativa L.) seeds may not apply to primed seeds. To determine how priming affects lettuce seeds in relation to the viability equation, an experiment was conducted using two cultivars, ‘Big Ben’ and ‘Parris Island Cos’. Seeds primed in polyethylene glycol 8000 (–1.45 MPa, 24 h at 15 °C) and nonprimed seeds were first adjusted to 6% and 9% moisture contents and then stored at 48 and 38 °C for up to 30 days, respectively. These storage conditions (6% MC and 48 °C; 9% MC and 38 °C) were predicted by the viability equation to result in equal longevities. Subsequent viability assays at 20 °C revealed that nonprimed seeds in both storage environments exhibited similar losses in viability over time, thus validating the Ellis-Roberts equation and the use of these conditions to apply different but equal aging stress. Primed seeds of both cultivars deteriorated faster than nonprimed seeds as expected. However, primed seeds did exhibit different rates of deterioration between the storage environments. Primed seeds stored at 9% MC and 38 °C deteriorated faster than primed seeds stored at 6% MC and 48 °C. The rate of decline in probit viability percentage was three times greater in primed ‘Big Ben’ seeds stored at 9% MC and 38 °C than for those stored at 6% MC and 48 °C (–1.34 versus –0.26 probits per day, respectively). ‘Parris Island Cos’ seeds stored at 9% MC and 38 °C had twice the rate of deterioration that those stored at 6% MC and 48 °C (–1.19 and –0.49 probits per day, respectively). The results indicate that primed lettuce seeds were more sensitive to the adverse effects of higher seed MC than were nonprimed seeds during storage at elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document