scholarly journals On Channel Estimation and Power Control for Multi-cell Multi-path Massive MIMO TDD System

Author(s):  
Jamal AMADID ◽  
Abdelfettah Belhabib ◽  
Mohamed Boulouird ◽  
Moha M’Rabet Hassan ◽  
Abdelouhab Zeroual

Abstract Some more practical channels that model the networks in a real environment is the multi-path communication channels. In order to investigate these communications channels. This work addressed Channel Estimation (CE) in the Uplink (UL) phase for a multi-cell multi-user massive multipleinput multiple-output (M-MIMO) system that studies multi-path communication between each user and its serving Base Station (BS). We suppose that the network operates under Time-Division Duplex (TDD) protocol. We studied and analyzed the multi-path channels and their benefit over CE since it presents a more realistic channel that displays a real propagation circumstance. on the flip side, we evaluated the CE quality using ideal MinimumMean Square Error (MMSE). This latter relies on an impractical property that can be explicated since the MMSE estimator considers foreknowledge on Large-Scale Fading (LSF) coefficients of interfering users. Thus, the suggested estimator is introduced to overcome this issue, where the suggested estimator tackled this problem and presented result asymptotic approaches to the performance of the MMSE estimator. Besides, we considered a more real communication in which the multi-path channels are either realized using Non-Line-of-Sight (NLoS) only or using both Line-of-Sight (LoS) and NLoS path depending on the distance at which the user is located from his serving BS. Otherwise, in numerous scenarios, users at the cell edge are strongly affected by Pilot Contamination (PC). Hence, we introduced a Power Control (PoC) policy so that the users at the cell edge are less affected by the PC problem. In the simulation results segment, the analytic and simulated results are introduced to assert our theoretical study.

Author(s):  
. Geetanjli

The power control in CDMA systems, grant numerous users to share resources of the system uniformly between each other, leading to expand capacity. With convenient power control, capacity of CDMA system is immense in contrast of frequency division multiple access (FDMA) and time division multiple access (TDMA). If power control is not achieved numerous problems such as the near-far effect will start to monopolize and consequently will reduce the capacity of the CDMA system. However, when the power control in CDMA systems is implemented, it allows numerous users to share resources of the system uniformly between themselves, leading to increased capacity For power control in CDMA system optimization algorithms i.e. genetic algorithm & particle swarm algorithm can be used which regulate a convenient power vector. These power vector or power levels are dogged at the base station and announce to mobile units to alter their transmitting power in accordance to these levels. The performances of the algorithms are inspected through both analysis and computer simulations, and compared with well-known algorithms from the literature.


2020 ◽  
Vol 3 (2) ◽  
pp. 128-139
Author(s):  
I Gusti Made Ngurah Desnanjaya ◽  
Mohammad Dwi Alfian

Wireless Sensor Network is a wireless network technology that includes sensor nodes and embedded systems. WSN has several advantages: it is cheaper for large-scale applications, can withstand extreme environments, and data transmission is relatively more stable. One of the WSN devices is nRF24L01+. Within the specifications given, the maximum communication distance is 1.1 km. However, the most effective distance for transmitting data in line of sight and non-line of sight is still unknown. Therefore, testing and analysis are needed so that the nRF24L01+ device can be used optimally for communication and data transmission. Through testing analysis on nRF24L01+ line of sight, Kuta beach location in Bali and non-line of sight on the STMIK STIKOM Indonesia campus. The effective communication distance of the nRF24L01+ module in line of sight is between 1 and 1000 meters. The distance of 1000 meters is the limit of the effective distance for sending data, and the packet loss rate is less than 15% which is included in the medium category. Meanwhile, in the non-line of sight, the effective distance of the nRF24L01+ communication module is 20 meters, and the packet loss is close to 15%, which is a moderate level limit. With the analysis module, nRF24L01+ can be a reference in determining the effective distance on WSN nRF24L01+ in determining remote control equipment data communication.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Shixun Wu ◽  
Shengjun Zhang ◽  
Kai Xu ◽  
Darong Huang

In this paper, a localization scenario that the home base station (BS) measures time of arrival (TOA) and angle of arrival (AOA) while the neighboring BSs only measure TOA is investigated. In order to reduce the effect of non-line of sight (NLOS) propagation, the probability weighting localization algorithm based on NLOS identification is proposed. The proposed algorithm divides these range and angle measurements into different combinations. For each combination, a statistic whose distribution is chi-square in LOS propagation is constructed, and the corresponding theoretic threshold is derived to identify each combination whether it is LOS or NLOS propagation. Further, if those combinations are decided as LOS propagation, the corresponding probabilities are derived to weigh the accepted combinations. Simulation results demonstrate that our proposed algorithm can provide better performance than conventional algorithms in different NLOS environments. In addition, computational complexity of our proposed algorithm is analyzed and compared.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gábor Fodor

Device-to-device (D2D) communications in cellular spectrum have the potential of increasing the spectral and energy efficiency by taking advantage of the proximity and reuse gains. Although several resource allocation (RA) and power control (PC) schemes have been proposed in the literature, a comparison of the performance of such algorithms as a function of the available channel state information has not been reported. In this paper, we examine which large scale channel gain knowledge is needed by practically viable RA and PC schemes for network assisted D2D communications. To this end, we propose a novel near-optimal and low-complexity RA scheme that can be advantageously used in tandem with the optimal binary power control scheme and compare its performance with three heuristics-based RA schemes that are combined either with the well-known 3GPP Long-Term Evolution open-loop path loss compensating PC or with an iterative utility optimal PC scheme. When channel gain knowledge about the useful as well as interfering (cross) channels is available at the cellular base station, the near-optimal RA scheme, termed Matching, combined with the binary PC scheme is superior. Ultimately, we find that the proposed low-complexity RA + PC tandem that uses some cross-channel gain knowledge provides superior performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ke Li ◽  
Xiaoqin Song ◽  
M. Omair Ahmad ◽  
M. N. S. Swamy

Massive MIMO is a promising technology to improve both the spectrum efficiency and the energy efficiency. The key problem that impacts the throughput of a massive MIMO system is the pilot contamination due to the nonorthogonality of the pilot sequences in different cells. Conventional channel estimation schemes cannot mitigate this problem effectively, and the computational complexity is increasingly becoming larger in views of the large number of antennas employed in a massive MIMO system. Furthermore, the channel estimation is always carried out with some ideal assumptions such as the complete knowledge of large-scale fading. In this paper, a new channel estimation scheme is proposed by utilizing interference cancellation and joint processing. Highly interfering users in neighboring cells are identified based on the estimation of large-scale fading and then included in the joint channel processing; this achieves a compromise between the effectiveness and efficiency of the channel estimation at a reasonable computational cost, and leads to an improvement in the overall system performance. Simulation results are provided to demonstrate the effectiveness of the proposed scheme.


Author(s):  
Subharthi Banerjee ◽  
Michael Hempel ◽  
Hamid Sharif

Railroad environments are generally considered to be among the most dynamic workplace environments, even with constant improvement efforts by the railroad industry. While there has been great progress in equipment safety, personnel safety is a significantly harder challenge. These challenges are primarily derived from the presence of heavy moving machinery in close proximity to personnel and the difficulty of designing reliable wearable protection devices. Additionally, variable weather conditions, challenging walking conditions (ballast, trip hazards, etc.), and difficulty to focus on environment, moving objects, and on tasks at hand place the employees in constant peril. Therefore, our survey is focused on exploring solutions for protecting employees through unified system modeling and design that makes the employee integral to the process and results in personal protective devices that work with the environment and the employee, not against them. The optimal system design integrates not only protection of the employees from falls, unsafe practices, or collisions, but also aids in resource planning, safe operation and accounting of “near-miss” situations. In recent years the railroads have made significant investments in process automation and monitoring solutions such as Wireless Sensor Networks. These technologies are becoming increasingly cloud-connected and autonomous. They provide a plethora of information about equipment positions, movement, railcar lading, and many other factors, all of which are highly useful in the design and implementation of a railyard worker protection system. They allow us to predict position and movement, and can thus be used to provide effective proximity detection and alerting in some railyard regions where these systems are installed. Additionally, we discuss several technologies addressing near-collision, fall, and proximity situations through RF and non-RF-based techniques. The railroad industry has been advancing efforts leveraging these technologies to improve the safety of their workers. However, there are also many challenges that remain largely unaddressed. For example, in railroads, a detailed and exhaustive causation analysis for worker incidents has yet to be conducted. Therefore, in an environment like a railyard there is no solution to detect or prevent Employee on Duty (EOD) fall, collision, or health issues such as dehydration, psychological issues and high blood pressure. Protective devices worn by workers is believed to be one of the most important, cost-effective, and scalable potential candidate solutions. Recent advances are making wearable wireless body area networks (WBAN) and wireless sensor networks (WSNs) that are distributed and large-scale a reality. Such distributed networks consist of wearable sensors, fixed-installation sensors and communication links between all of them. The challenges are found in selecting wearable sensors, researching reliable communication among nodes without interfering with proximity detection and suitable for high-multipath, non-line of sight channel conditions, wearable antenna designs, power supply requirements, etc. A dense, distributed, large-scale environment like a railyard requires comprehensive workspace modelling and safety analysis. Interference related to RF sensor deployment, blind spots in vision-based approaches, and wireless propagation in intra and inter-WBAN communication due to dense non-Line-of-Sight workspace environments, metallic heavy machinery and the use of RF sensors, are all individual research challenges in this domain. This paper reviews these challenges, explores potential solutions, and thus provides a comprehensive survey of a holistic system design approach for a wearable railyard worker protection system that is unobtrusive, effective, and reliable.


Sign in / Sign up

Export Citation Format

Share Document