scholarly journals Neighborhood matters: high phylogenetic diversity of experimental plant assemblages improves community performance

Author(s):  
Rocío Chaves ◽  
Pablo Ferrandis ◽  
Adrián Escudero ◽  
Arantzazu L. Luzuriaga

Abstract Background and AimsAlthough the role played by phylogeny in the assembly of plant communities remains as a priority to complete the theory of species coexistence, experimental evidence is lacking. It is still unclear to what extent phylogenetic diversity is a driver or a consequence of species assembly processes. We experimentally explored how phylogenetic diversity can drive the community level responses to drought conditions in annual plant communities. To this end, we manipulated the phylogenetic diversity of the species assemblages and the water availability in a common garden experiment with two treatments: average natural rainfall and drought.MethodsWe recorded plant survival and the numbers of flowering and fruiting plants per species in each assemblage. High phylogenetic diversity favored species coexistence over time with higher plant survival and more flowering and fruiting plants, especially under severe drought.Key Results. Our results demonstrate the existence of niche complementarity and the convergence of water economy strategies as major mechanisms for promoting species coexistence in plant assemblages in semiarid Mediterranean habitats.ConclusionsOur findings point to high phylogenetic diversity among neighboring plants as a plausible feature underpinning the recent “united we stand” framework, which states that diffuse positive interactions may promote mechanisms for the persistence of rare species in the community. We suggest that the large species number in the regional species pool may be the consequence of assembly processes occurring at small spatial scales, because the success of each species in terms of surviving and producing offspring was greater when the phylogenetic diversity was higher. Our study is a step forward to understand how phylogenetic relatedness is connected to the mechanisms determining the maintenance of biodiversity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rocío Chaves ◽  
Pablo Ferrandis ◽  
Adrián Escudero ◽  
Arantzazu L. Luzuriaga

AbstractAlthough the role played by phylogeny in the assembly of plant communities remains as a priority to complete the theory of species coexistence, experimental evidence is lacking. It is still unclear to what extent phylogenetic diversity is a driver or a consequence of species assembly processes. We experimentally explored how phylogenetic diversity can drive the community level responses to drought conditions in annual plant communities. We manipulated the initial phylogenetic diversity of the assemblages and the water availability in a common garden experiment with two irrigation treatments: average natural rainfall and drought, formed with annual plant species of gypsum ecosystems of Central Spain. We recorded plant survival and the numbers of flowering and fruiting plants per species in each assemblage. GLMMs were performed for the proportion of surviving, flowering, fruiting plants per species and for total proportion of surviving species and plants per pot. In water limited conditions, high phylogenetic diversity favored species coexistence over time with higher plant survival and more flowering and fruiting plants per species and more species and plants surviving per pot. Our results agree with the existence of niche complementarity and the convergence of water economy strategies as major mechanisms for promoting species coexistence in plant assemblages in semiarid Mediterranean habitats. Our findings point to high phylogenetic diversity among neighboring plants as a plausible feature underpinning the coexistence of species, because the success of each species in terms of surviving and producing offspring in drought conditions was greater when the initial phylogenetic diversity was higher. Our study is a step forward to understand how phylogenetic relatedness is connected to the mechanisms determining the maintenance of biodiversity.


2021 ◽  
Author(s):  
Damie Pak ◽  
Varun Swamy ◽  
Patricia Alvarez-Loayza ◽  
Fernando Cornejo ◽  
Simon A. Queenborough ◽  
...  

Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, including seasonal patterns of fruit production. Here we study whether this phenological diversity is non-random, what are the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analyses to test for phenological synchrony versus compensatory dynamics (i.e. anti-synchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at a wide range of time scales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species likely to share traits (confamilials) and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6 mo scales, suggesting these species share phenological niches to match seasonality of wind. Our results indicate that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology partly results from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.


2019 ◽  
Vol 107 (5) ◽  
pp. 2090-2104 ◽  
Author(s):  
Thomas Galland ◽  
Guillaume Adeux ◽  
Hana Dvořáková ◽  
Anna E‐Vojtkó ◽  
Ildikó Orbán ◽  
...  

2013 ◽  
Vol 10 (6) ◽  
pp. 9149-9177 ◽  
Author(s):  
F. E. Dreesen ◽  
H. J. De Boeck ◽  
I. A. Janssens ◽  
I. Nijs

Abstract. The probability that plant communities undergo successive climate extremes increases under climate change. Exposure to an extreme event might elicit acclimatory responses and thereby greater resistance to a subsequent event, but might also reduce resistance if the recovery period is too short or resilience too low. Using experimental plant assemblages, we compared the effects of two successive extremes (either two drought extremes, two heat extremes or two drought + heat extremes) to those of assemblages being exposed only to the second extreme. Additionally, the recovery period between the successive extremes was varied (2, 3.5 or 6 weeks). Among the different types of climate extremes, combined drought + heat extremes induced substantial leaf and plant mortality, while the effects of drought and heat extremes were smaller. Preceding drought + heat extremes lowered the resistance in terms of leaf survival to a subsequent drought + heat extreme if the recovery period was 2 weeks, even though the leaves had completely recovered during that interval. No reduced resistance to subsequent extremes was recorded with longer recovery times or with drought or heat extremes. Despite mortality on the short term, the drought + heat and the heat extremes increased the end-of-season aboveground biomass, independent of the number of events or the recovery period. These results show that the effect of a preceding extreme event disappears quite quickly, but that recurrent climate extremes with short time intervals can weaken the resistance of herbaceous plant assemblages. This can however be compensated afterwards through rapid recovery and secondary, positive effects in the longer term.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 990
Author(s):  
Javier Pérez-Hernández ◽  
Rosario G. Gavilán

The study of ecological succession to determine how plant communities re-assemble after a natural or anthropogenic disturbance has always been an important topic in ecology. The understanding of these processes forms part of the new theories of community assembly and species coexistence, and is attracting attention in a context of expanding human impacts. Specifically, new successional studies provide answers to different mechanisms of community assemblage, and aim to define the importance of deterministic or stochastic processes in the succession dynamic. Biotic limits, which depend directly on biodiversity (i.e., species competition), and abiotic filtering, which depends on the environment, become particularly important when they are exceeded, making the succession process more complicated to reach the previous disturbance stage. Plant functional traits (PFTs) are used in secondary succession studies to establish differences between abandonment stages or to compare types of vegetation or flora, and are more closely related to the functioning of plant communities. Dispersal limitation is a PFT considered an important process from a stochastic point of view because it is related to the establishing of plants. Related to it the soil seed bank plays an important role in secondary succession because it is essential for ecosystem functioning. Soil compounds and microbial community are important variables to take into account when studying any succession stage. Chronosequence is the best way to study the whole process at different time scales. Finally, our objective in this review is to show how past studies and new insights are being incorporated into the basis of classic succession. To further explore this subject we have chosen old-field recovery as an example of how a number of different plant communities, including annual and perennial grasslands and shrublands, play an important role in secondary succession.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


2021 ◽  
Vol 13 (5) ◽  
pp. 2468
Author(s):  
Nguyen Hong Hai ◽  
Yousef Erfanifard ◽  
Van Bac Bui ◽  
Trinh Hien Mai ◽  
Any Mary Petritan ◽  
...  

Studying spatial patterns and habitat association of plant communities may provide understanding of the ecological mechanisms and processes that maintain species coexistence. To conduct assessments of correlation between community compositions and habitat association, we used data from two topographically different plots with 2 ha area in tropical evergreen forests with the variables recorded via grid systems of 10 × 10 m subplots in Northern-Central Vietnam. First, we tested the relationship between community composition and species diversity indices considering the topographical variables. We then assessed the interspecific interactions of 20 dominant plant species using the nearest-neighbor distribution function, Dij(r), and Ripley’s K-function, Kij(r). Based on the significant spatial association of species pairs, indices of interspecific interaction were calculated by the quantitative amounts of the summary statistics. The results showed that (i) community compositions were significantly influenced by the topographic variables and (ii) almost 50% significant pairs of species interactions were increased with increasing spatial scales up to 10–15 m, then declined and disappeared at scales of 30–40 m. Segregation and partial overlap were the dominant association types and disappeared at larger spatial scales. Spatial segregation, mixing, and partial overlap revealed the important species interactions in maintaining species coexistence under habitat heterogeneity in diverse forest communities.


2020 ◽  
Vol 117 (9) ◽  
pp. 4464-4470 ◽  
Author(s):  
Susan Harrison ◽  
Marko J. Spasojevic ◽  
Daijiang Li

Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate–diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate–diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates.


Sign in / Sign up

Export Citation Format

Share Document