Otx1 and Otx2 activities are required for the normal development of the mouse inner ear

Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2335-2343 ◽  
Author(s):  
H. Morsli ◽  
F. Tuorto ◽  
D. Choo ◽  
M.P. Postiglione ◽  
A. Simeone ◽  
...  

The Otx1 and Otx2 genes are two murine orthologues of the Orthodenticle (Otd) gene in Drosophila. In the developing mouse embryo, both Otx genes are expressed in the rostral head region and in certain sense organs such as the inner ear. Previous studies have shown that mice lacking Otx1 display abnormal patterning of the brain, whereas embryos lacking Otx2 develop without heads. In this study, we examined, at different developmental stages, the inner ears of mice lacking both Otx1 and Otx2 genes. In wild-type inner ears, Otx1, but not Otx2, was expressed in the lateral canal and ampulla, as well as part of the utricle. Ventral to the mid-level of the presumptive utricle, Otx1 and Otx2 were co-expressed, in regions such as the saccule and cochlea. Paint-filled membranous labyrinths of Otx1−/− mutants showed an absence of the lateral semicircular canal, lateral ampulla, utriculosaccular duct and cochleosaccular duct, and a poorly defined hook (the proximal part) of the cochlea. Defects in the shape of the saccule and cochlea were variable in Otx1−/− mice and were much more severe in an Otx1−/−;Otx2(+/)- background. Histological and in situ hybridization experiments of both Otx1−/− and Otx1−/−;Otx2(+/)- mutants revealed that the lateral crista was absent. In addition, the maculae of the utricle and saccule were partially fused. In mutant mice in which both copies of the Otx1 gene were replaced with a human Otx2 cDNA (hOtx2(1)/ hOtx2(1)), most of the defects associated with Otx1−/− mutants were rescued. However, within the inner ear, hOtx2 expression failed to rescue the lateral canal and ampulla phenotypes, and only variable rescues were observed in regions where both Otx1 and Otx2 are normally expressed. These results suggest that both Otx genes play important and differing roles in the morphogenesis of the mouse inner ear and the development of its sensory organs.

2021 ◽  
Author(s):  
Evin Magner ◽  
Pamela Sandoval-Sanchez ◽  
Peter F Hitchcock ◽  
Scott M Taylor

Abstract In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), Müller glia function as intrinsic stem cells, producing progenitor cells that regenerate photoreceptors and restore vision. MicroRNAs (miRNAs) critically regulate neurogenesis in the brain and retina, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. The miRNA miR-18a regulates photoreceptor differentiation in the embryonic retina. The purpose of the current study was to determine the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in-situ hybridization (ISH) and immunohistochemistry (IHC) showed that miR-18a expression increases throughout the retina by 1-day post-injury (dpi) and continues to increase through 5 dpi. Bromodeoxyuridine (BrdU) labeling showed that at 7 and 10 dpi, when regenerated photoreceptors are normally differentiating, there are more proliferating Müller glia-derived progenitors in homozygous miR-18a mutant (miR-18ami5012) retinas compared with wild type (WT), indicating that miR-18a negatively regulates injury-induced proliferation. At 7 and 10 dpi, miR-18ami5012 retinas have fewer mature photoreceptors than WT, but there is no difference at 14 dpi, revealing that photoreceptor regeneration is delayed. BrdU labeling showed that the excess progenitors in miR-18ami5012 retinas migrate to other retinal layers besides the photoreceptor layer. Inflammation is critical for photoreceptor regeneration and RT-qPCR showed that, in the absence of miR-18a, inflammation is prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that during injury-induced photoreceptor regeneration, miR-18a regulates proliferation and photoreceptor regeneration by regulating key aspects of the inflammatory response during photoreceptor regeneration in zebrafish.


2018 ◽  
Author(s):  
Eylan Yutuc ◽  
Roberto Angelini ◽  
Mark Baumert ◽  
Natalia Mast ◽  
Irina Pikuleva ◽  
...  

AbstractDysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatisation in combination with micro-liquid-extraction for surface analysis and liquid chromatography - mass spectrometry to image sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400 µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low abundance and difficult to ionise sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild type and cholesterol 24S-hydroxylase knock-out mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.SignificanceThe brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions, however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry imaging platform to reveal spatial cholesterol metabolism in situ at 400 µm resolution on 10 µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24-hydroxylase (Cyp46a1), the major cholesterol metabolising enzyme.


2019 ◽  
Vol 20 (8) ◽  
pp. 1856 ◽  
Author(s):  
Shengming Sun ◽  
Ying Wu ◽  
Hongtuo Fu ◽  
Xianping Ge ◽  
Hongzheng You ◽  
...  

Autophagy is a cytoprotective mechanism triggered in response to adverse environmental conditions. Herein, we investigated the autophagy process in the oriental river prawn (Macrobrachium nipponense) following hypoxia. Full-length cDNAs encoding autophagy-related genes (ATGs) ATG3, ATG4B, ATG5, and ATG9A were cloned, and transcription following hypoxia was explored in different tissues and developmental stages. The ATG3, ATG4B, ATG5, and ATG9A cDNAs include open reading frames encoding proteins of 319, 264, 268, and 828 amino acids, respectively. The four M. nipponense proteins clustered separately from vertebrate homologs in phylogenetic analysis. All four mRNAs were expressed in various tissues, with highest levels in brain and hepatopancreas. Hypoxia up-regulated all four mRNAs in a time-dependent manner. Thus, these genes may contribute to autophagy-based responses against hypoxia in M. nipponense. Biochemical analysis revealed that hypoxia stimulated anaerobic metabolism in the brain tissue. Furthermore, in situ hybridization experiments revealed that ATG4B was mainly expressed in the secretory and astrocyte cells of the brain. Silencing of ATG4B down-regulated ATG8 and decreased cell viability in juvenile prawn brains following hypoxia. Thus, autophagy is an adaptive response protecting against hypoxia in M. nipponense and possibly other crustaceans. Recombinant MnATG4B could interact with recombinant MnATG8, but the GST protein could not bind to MnATG8. These findings provide us with a better understanding of the fundamental mechanisms of autophagy in prawns.


1999 ◽  
Vol 277 (5) ◽  
pp. R1435-R1443 ◽  
Author(s):  
Jian-Hua Yao ◽  
Shi-Ming Ye ◽  
William Burgess ◽  
James F. Zachary ◽  
Keith W. Kelley ◽  
...  

Interleukin-1β (IL-1β) is expressed in the mouse brain after intracerebroventricular injection of lipopolysaccharide (LPS) and is thought to be responsible for many of the behavioral and neuroendocrine changes that occur during inflammation. In this study we show that LPS in the brain also induces expression of interleukin-1β converting enzyme (ICE) and that ICE is important for the characteristic anorectic response of mice to intracerebroventricular LPS. Specifically, mice that were deficient in ICE (ICE−/−) resisted the anorexia caused by intracerebroventricular injection of LPS but were sensitive to the anorectic properties of recombinant IL-1β. The typical anorectic response seen in wild-type (WT) mice after LPS was restored in ICE−/−mice by intracerebroventricular administration of the ICE analog cathepsin G. Conversely, anorexia induced by intracerebroventricular injection of LPS in WT mice was blocked by prior intracerebroventricular injection of the ICE antagonist YVAD.CMK. Furthermore, in situ hybridization immunohistochemistry revealed intense expression of ICE mRNA in the hippocampus and dorsomedial hypothalamus of WT mice after intracerebroventricular injection of LPS. Thus ICE mRNA is expressed in brain after intracerebroventricular injection of LPS and is important for induction of anorexia, presumably because it generates mature IL-1β. These results suggest that preventing generation of mature IL-1β can inhibit anorexia induced by LPS in the brain and, therefore, reveal ICE as a potential target for regulating food intake during brain inflammation.


2021 ◽  
Author(s):  
Evin Magner ◽  
Pamela Sandoval-Sanchez ◽  
Peter F Hitchcock ◽  
Scott M Taylor

In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), Müller glia function as intrinsic stem cells, producing progenitor cells that regenerate photoreceptors and restore vision. MicroRNAs (miRNAs) critically regulate neurogenesis in the brain and retina, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. The miRNA miR-18a regulates photoreceptor differentiation in the embryonic retina. The purpose of the current study was to determine the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in-situ hybridization (ISH) and immunohistochemistry (IHC) showed that miR-18a expression increases throughout the retina by 1-day post-injury (dpi) and continues to increase through 5 dpi. Bromodeoxyuridine (BrdU) labeling showed that at 7 and 10 dpi, when regenerated photoreceptors are normally differentiating, there are more proliferating Müller glia-derived progenitors in homozygous miR-18a mutant (miR-18ami5012) retinas compared with wild type (WT), indicating that miR-18a negatively regulates injury-induced proliferation. At 7 and 10 dpi, miR-18ami5012 retinas have fewer mature photoreceptors than WT, but there is no difference at 14 dpi, revealing that photoreceptor regeneration is delayed. BrdU labeling showed that the excess progenitors in miR-18ami5012 retinas migrate to other retinal layers besides the photoreceptor layer. Inflammation is critical for photoreceptor regeneration and RT-qPCR showed that, in the absence of miR-18a, inflammation is prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that during injury-induced photoreceptor regeneration, miR-18a regulates proliferation and photoreceptor regeneration by regulating key aspects of the inflammatory response during photoreceptor regeneration in zebrafish.


2012 ◽  
Vol 302 (11) ◽  
pp. G1336-G1342 ◽  
Author(s):  
Go Yoshimichi ◽  
Chunmin C. Lo ◽  
Kellie L. K. Tamashiro ◽  
Liyun Ma ◽  
Dana M. Lee ◽  
...  

Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are satiation factors secreted by the small intestine in response to lipid meals. Apo AIV and CCK-8 has an additive effect to suppress food intake relative to apo AIV or CCK-8 alone. In this study, we determined whether CCK-8 (1, 3, or 5 μg/kg ip) reduces food intake in fasted apo AIV knockout (KO) mice as effectively as in fasted wild-type (WT) mice. Food intake was monitored by the DietMax food system. Apo AIV KO mice had significantly reduced 30-min food intake following all doses of CCK-8, whereas WT mice had reduced food intake only at doses of 3 μg/kg and above. Post hoc analysis revealed that the reduction of 10-min and 30-min food intake elicited by each dose of CCK-8 was significantly larger in the apo AIV KO mice than in the WT mice. Peripheral CCK 1 receptor (CCK1R) gene expression (mRNA) in the duodenum and gallbladder of the fasted apo AIV KO mice was comparable to that in WT mice. In contrast, CCK1R mRNA in nodose ganglia of the apo AIV KO mice was upregulated relative to WT animals. Similarly, upregulated CCK1R gene expression was found in the brain stem of apo AIV KO mice by in situ hybridization. Although it is possible that the increased satiating potency of CCK in apo AIV KO mice is mediated by upregulation of CCK 1R in the nodose ganglia and nucleus tractus solitarius, additional experiments are required to confirm such a mechanism.


Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3686-3692 ◽  
Author(s):  
Jeremy T. Smith ◽  
Matthew J. Cunningham ◽  
Emilie F. Rissman ◽  
Donald K Clifton ◽  
Robert A. Steiner

The Kiss1 gene encodes a family of neuropeptides called kisspeptins, which activate the receptor G protein-coupled receptor-54 and play a role in the neuroendocrine regulation of GnRH secretion. We examined whether estradiol (E2) regulates KiSS-1 in the forebrain of the female mouse by comparing KiSS-1 mRNA expression among groups of ovary-intact (diestrus), ovariectomized (OVX), and OVX plus E2-treated mice. In the arcuate nucleus (Arc), KiSS-1 expression increased after ovariectomy and decreased with E2 treatment. Conversely, in the anteroventral periventricular nucleus (AVPV), KiSS-1 expression was reduced after ovariectomy and increased with E2 treatment. To determine whether the effects of E2 on KiSS-1 are mediated through estrogen receptor (ER)α or ERβ, we evaluated the effects of E2 in OVX mice that lacked functional ERα or ERβ. In OVX mice that lacked functional ERα, KiSS-1 mRNA did not respond to E2 in either the Arc or AVPV, suggesting that ERα is essential for mediating the inhibitory and stimulatory effects of E2. In contrast, KiSS-1 mRNA in OVX mice that lacked functional ERβ responded to E2 exactly as wild-type animals. Double-label in situ hybridization revealed that virtually all KiSS-1-expressing neurons in the Arc and AVPV coexpress ERα, suggesting that the effects of E2 are mediated directly through KiSS-1 neurons. We conclude that KiSS-1 neurons in the Arc, which are inhibited by E2, may play a role in the negative feedback regulation of GnRH secretion, whereas KiSS-1 neurons in the AVPV, which are stimulated by E2, may participate in the positive feedback regulation of GnRH secretion.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


1992 ◽  
Vol 57 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Karel Šindelář ◽  
Vojtěch Kmoníček ◽  
Marta Hrubantová ◽  
Zdeněk Polívka

(Arylthio)benzoic acids IIa - IIe and VIb - VId were transformed via the acid chlorides to the N,N-dimethylamides which were reduced either with diborane "in situ" or with lithium aluminium hydride to N,N-dimethyl-(arylthio)benzylamines Ia - Ie and Vb - Vd. Leuckart reaction of the aldehydes IX and X with dimethylformamide and formic acid afforded directly the amines Va and Ve. Demethylation of the methoxy compounds Ia and Ve with hydrobromic acid resulted in the phenolic amines If and Vf. The most interesting N,N-dimethyl-4-(phenylthio)benzylamine (Va) hydrochloride showed affinity to cholinergic and 5-HT2 serotonin receptors in the rat brain and some properties considered indicative of antidepressant activity (inhibition of serotonin re-uptake in the brain and potentiation of yohimbine toxicity in mice).


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


Sign in / Sign up

Export Citation Format

Share Document