scholarly journals Breed Differences in the Expression Levels of gga-miR-222a in Laying Hens Influenced H2S Production by Regulating Methionine Synthase Genes in Gut Bacteria

2020 ◽  
Author(s):  
Sicheng Xing ◽  
Chunbo Huang ◽  
Yiwen Yang ◽  
Jingyuan Chen ◽  
Jiandui Mi ◽  
...  

Abstract Background: The microbiota in the cecum of laying hens is critical for substance metabolism and odor gas production. Recent studies have suggested that host miRNAs can regulate gene expression in the gut microbiota. The expression profiles of host-derived miRNAs in the cecal content of two laying hen breeds, Hy-line Gray and Lohmann Pink, which have dissimilar H2S production, were characterized, and their possible effects on H2S production by regulating the expression of related genes in the microbiota were demonstrated. Results: The differential expression of microbial serine O-acetyltransferase, methionine synthase, aspartate aminotransferase, methionine-gamma-lyase and adenylylsulfate kinase between the two breeds resulted in lower H2S production in the Hy-line hens. The results also demonstrated miRNA microvesicles in the cecal content of laying hens and found potential miRNA-target relationships between 9 differentially expressed miRNAs and 9 differentially expressed microbial genes related to H2S production, among which gga-miR-222a targeted two methionine synthase genes, Odosp_3416 and BF9343_2953. An in vitro fermentation experiment showed that gga-miR-222a upregulated the expression of these genes, which increased methionine concentrations but decreased H2S production and soluble sulfide concentrations, indicating the potential of host-derived gga-miR-222a to reduce H2S emission in laying hens. Conclusion: These findings identify both a physiologic role by which miRNA shapes the cecal microbiota of laying hens and a strategy to use host miRNAs to manipulate the microbiome and actively expressed key microbial genes to reduce H2S emission and breed environmentally friendly laying hens.

2020 ◽  
Author(s):  
Sicheng Xing ◽  
Chunbo Huang ◽  
Ruiting Wu ◽  
Yiwen Yang ◽  
Jingyuan Chen ◽  
...  

Abstract Background: The microbiota in the cecum of laying hens was critical for host digestion metabolism and odor gas production. Recent studies have suggested that host miRNAs could regulate gene expression in the gut microbiota. The expression profiles of host-derived miRNAs in the cecal content of two laying hen breeds, Hy-line Gray and Lohmann Pink, which have dissimilar H2S production were characterized, and their possible effects on H2S production by regulating the expression of related genes in the microbiota were demonstrated. Results: The differential expression of microbial serine O-acetyltransferase, methionine synthase, aspartate aminotransferase, methionine-gamma-lyase and adenylylsulfate kinase between the two breeds resulted in lower H2S production in the Hy-line hens. The results also demonstrated miRNA exosomes in the cecal content of laying hens and the potential miRNA-target relationships between 9 differentially expressed miRNAs and 9 differentially expressed microbial genes related to H2S production were investigated, among which gga-miR-222a targeted two methionine synthase genes, Odosp_3416 and BF9343_2953. An in vitro fermentation experiment showed that gga-miR-222a upregulated the expression of these genes, which increased methionine concentrations but decreased H2S production and soluble sulfide concentrations, indicating the potential of host-derived gga-miR-222a to reduce H2S emission in laying hens. Conclusion: These findings identify both a physiologic role by which miRNA shapes the cecal microbiota of laying hens and a strategy to use host miRNAs to manipulate the microbiome and actively expressed key microbial genes to reduce H2S emission and breed environmentally friendly laying hens.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Si-Cheng Xing ◽  
Chun-Bo Huang ◽  
Rui-Ting Wu ◽  
Yi-Wen Yang ◽  
Jing-Yuan Chen ◽  
...  

Abstract Background The microbiota in the cecum of laying hens is crucial for host digestion, metabolism, and odor gas production. The results of recent studies have suggested that host microRNAs (miRNAs) can regulate gene expression of the gut microbiota. In the present study, the expression profiles of host-derived miRNAs in the cecal content of two laying hen breeds; Hy-line Gray and Lohmann Pink, which have dissimilar H2S production, were characterized; and their effects on H2S production by regulating the expression of gut microbiota-associated genes were demonstrated. Results The differential expression of microbial serine O-acetyltransferase, methionine synthase, aspartate aminotransferase, methionine-gamma-lyase, and adenylylsulfate kinase between the two hen breeds resulted in lower H2S production in the Hy-line hens. The results also revealed the presence of miRNA exosomes in the cecal content of laying hens, and an analysis of potential miRNA-target relationships between 9 differentially expressed miRNAs and 9 differentially expressed microbial genes related to H2S production identified two methionine synthase genes, Odosp_3416 and BF9343_2953, that are targeted by gga-miR-222a. Interestingly, in vitro fermentation results showed that gga-miR-222a upregulates the expression of these genes, which increased methionine concentrations but decreased H2S production and soluble sulfide concentrations, indicating the potential of host-derived gga-miR-222a to reduce H2S emission in laying hens. Conclusion The findings of the present study reveal both a physiological role by which miRNAs shape the cecal microbiota of laying hens and a strategy to use host miRNAs to manipulate the microbiome and actively express key microbial genes to reduce H2S emissions and breed environmentally friendly laying hens.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 931-931
Author(s):  
Andrew Wu ◽  
Lin Hanyang ◽  
Katharina Rothe ◽  
Min Chen ◽  
Jens Ruschmann ◽  
...  

Abstract Chronic myeloid leukemia (CML) stem/progenitor cells and BCR-ABL+ acute lymphoblastic leukemia (ALL) blast cells are insensitive to tyrosine kinase inhibitor (TKI) monotherapies. These cells rapidly generate therapy-resistant clones in vitro and in vivo and are often responsible for disease relapse. Therefore, identification of predictive biomarkers and novel treatments that target key molecular events active in leukemic stem cells (LSCs) are needed. MicroRNAs (miRNAs) are small molecules that regulate the gene expression network and are highly deregulated in many cancers. Through global transcriptome profiling, we have recently identified 66 differentially expressed miRNAs in pre-treatment CD34+ stem/progenitor cells from CML patients (n=6) compared to healthy bone marrow (NBM) controls (n=3, adjusted P<0.05); 26 differentially expressed miRNAs were identified between subsequent IM-nonresponders and IM-responders (P<0.05). 21 differentially expressed miRNAs were successfully validated in additional IM-responders (n=11), IM-nonresponders (n=11) and NBM (n=11). Interestingly, miR-185 was discovered to be one of the most highly deregulated miRNAs, with significant reduction in CD34+ cells from IM-nonresponders compared to IM-responders (p=0.0006). This significant change was further demonstrated in CD34+ cells from CML patients (n=60) before and after 3-month TKI nilotinib treatment in a clinical trial (p<0.05). We further demonstrated that miR-185 functions as a tumor suppressor; its restored expression by lentiviral transduction in CD34+ IM-nonresponder cells significantly impaired survival of these cells and sensitized them to TKI treatment in vitro. Restored miR-185 expression in BCR-ABL+ ALL blasts led to a profound decrease in leukemia burden and significantly enhanced survival compared to controls in vivo (median survival 65 vs. 47 days, P=0.0005). Strikingly, mice injected with miR-185-transduced cells and treated with dasatinib (DA) survived much longer than recipients of control cells treated with DA (median survival 83 vs. 60 days, P=0.0018). Moreover, restoration of miR-185 expression combined with DA treatment greatly reduced in vivo long-term regenerative activity of LSCs from IM-nonresponders as compared to control cells treated with DA in NRG mice (<0.2% vs. 5% GFP+ patient cells in the BM, 25 weeks post-transplantation). We observed not only a marked reduction in GFP+CD34+ cells, but also a near elimination of GFP+CD34+CD38- LSCs that were transduced with miR-185 and treated with DA compared to control cells treated with DA, indicating that restored miR-185 expression combined with DA preferentially prevents the growth of patient-derived long-term leukemia-initiating cells in vivo. Several miRNA target genes were further identified by integrating miRNA expression profiles with gene expression profiles from the same patient samples using strand-specific RNA-seq. Based on three out of six prediction algorithms (mirBase, TargetScan, miRanda, tarBase, mirTarget2, and PicTar), PAK6, a serine/threonine-protein kinase, was found to be highly expressed in CD34+ IM-nonresponder cells compared to IM-responders (p<0.003), which correlated with reduced expression of miR-185 in these cells (p=0.0002). PAK6 was confirmed as a target gene of miR-185 by a luciferase reporter assay. Western blot analysis showed that restored miR-185 expression caused a marked decrease in protein levels of PAK6 in miR-185-transduced cells and suppression of PAK6 reduced viability of these cells. These results indicate that PAK6 is a critical target of miR-185, and that loss of miR-185 expression in CML may lead to up-regulation of PAK6, which in turn contributes to disease progression and drug resistance. Indeed, the use of a pre-clinically validated pan PAK inhibitor (PF-3758309) significantly inhibited the growth of IM-resistant cells and CD34+ IM-nonresponder cells and these effects could be enhanced by TKIs (p<0.05). Mechanistically, we observed that p-ERK and p-AKT were significantly reduced in PAK6 knockdown or miR185-restored IM-resistant cells in response to IM treatment. Thus, we infer that downregulation of PAK6 may sensitize TKI-resistant cells to TKI therapy through inhibition of the RAS/MAPK pathway. Taken together, PAK6, a novel target of miR-185, emerges as an attractive druggable target for combination therapy of TKI-resistant patients. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Li Deng ◽  
Wei Qing ◽  
Lijuan Huang ◽  
Cong Liu ◽  
Jiajun Zheng ◽  
...  

Abstract Hydroxyapatite is a commonly used scaffold material for bone tissue engineering. However, the osteogenic mechanism of hydroxyapatite scaffolds remains unclear. Recently, we have prepared a hydroxyapatite scaffolds with microchannels and porous structures (HAG) which have good osteogenic effects in vitro and in vivo. In present study, we explained the mechanism of HAG scaffolds promoted the osteogenic differentiation from the perspective of miRNA differential expression. We used microarray assays to analyze the expression profiles of miRNAs from the osteogenic differentiation of hPMSCs with or without HAG; 16 miRNAs were upregulated and 29 miRNAs were downregulated between the two types of cells. And overexpression the differential miRNAs could promote the osteogenic differentiation of hPMSCs. Additionally, gene ontology analysis, pathway analysis, and miRNA-mRNA-network built were performed to reveal that the differentially expressed miRNAs participate in multiple biological processes, including cell metabolic, cell junction, cell development, differentiation, and signal transduction, among others. Furthermore, we found that these differentially expressed miRNAs connect osteogenic differentiation to processes such as axon guidance, MAPK, and TGF-beta signaling pathway. This is the first study to identify and characterize differentiational miRNAs derived from HAG-hPMSC cells.


2019 ◽  
Vol 31 (4) ◽  
pp. 645 ◽  
Author(s):  
Jihyun Kim ◽  
Jaewang Lee ◽  
Jin Hyun Jun

Recurrent implantation failure (RIF) is one of the main causes for the repeated failure of IVF, and the major reason for RIF is thought to be a miscommunication between the embryo and uterus. However, the exact mechanism underlying embryo–uterus cross-talk is not fully understood. The aim of the present study was to identify differentially expressed microRNAs (miRNAs) among blastocysts, non-outgrowth and outgrowth embryos in mice using microarray analysis. A bioinformatics analysis was performed to predict the potential mechanisms of implantation. The miRNA expression profiles differed significantly between non-outgrowth and outgrowth embryos. In all, 3163 miRNAs were detected in blastocysts and outgrowth embryos. Of these, 10 miRNA candidates (let-7b, miR-23a, miR-27a, miR-92a, miR-183, miR-200c, miR-291a, miR-425, miR-429 and miR-652) were identified as significant differentially expressed miRNAs of outgrowth embryos by in silico analysis. The expression of the miRNA candidates was markedly changed during preimplantation embryo development. In particular, let-7b-5p, miR-200c-3p and miR-23a-3p were significantly upregulated in outgrowth embryos compared with non-outgrowth blastocysts. Overall, differentially expressed miRNAs in outgrowth embryos compared with blastocysts and non-outgrowth embryos could be involved in embryo attachment, and interaction between the embryo proper and maternal endometrium during the implantation process.


Author(s):  
Chengyi Fu ◽  
Shu Lou ◽  
Guirong Zhu ◽  
Liwen Fan ◽  
Xin Yu ◽  
...  

Objective: To identify new microRNA (miRNA)-mRNA networks in non-syndromic cleft lip with or without cleft palate (NSCL/P).Materials and Methods: Overlapping differentially expressed miRNAs (DEMs) were selected from cleft palate patients (GSE47939) and murine embryonic orofacial tissues (GSE20880). Next, the target genes of DEMs were predicted by Targetscan, miRDB, and FUNRICH, and further filtered through differentially expressed genes (DEGs) from NSCL/P patients and controls (GSE42589), MGI, MalaCards, and DECIPHER databases. The results were then confirmed by in vitro experiments. NSCL/P lip tissues were obtained to explore the expression of miRNAs and their target genes.Results: Let-7c-5p and miR-193a-3p were identified as DEMs, and their overexpression inhibited cell proliferation and promoted cell apoptosis. PIGA and TGFB2 were confirmed as targets of let-7c-5p and miR-193a-3p, respectively, and were involved in craniofacial development in mice. Negative correlation between miRNA and mRNA expression was detected in the NSCL/P lip tissues. They were also associated with the occurrence of NSCL/P based on the MGI, MalaCards, and DECIPHER databases.Conclusions: Let-7c-5p-PIGA and miR-193a-3p-TGFB2 networks may be involved in the development of NSCL/P.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-42
Author(s):  
Xiaoli Liu ◽  
Dongyue Zhang ◽  
Hao Wang ◽  
Qian Ren ◽  
Lina Wang ◽  
...  

Macrophages are important member in tissue microenvironments and play diverse physiologic and pathologic roles. Leukemia associated macrophages (LAM) are a kind of specifically activated macrophages in leukemia microenvironment, which are different from M1, M2 and TAMs. We have reported the heterogeneities in gene expression profiles of LAMs. However, MicroRNA expression profiles of LAMs and regulatory mechanism are still unknown. Here, a MLL-AF9 induced mouse acute myeloid leukemia (AML) model was used, and LAMs in the spleen and bone marrow were sorted for microRNA sequencing. The microRNA expression profiles of LAMs in bone marrow and spleen in AML mice were different from macrophages from control mice. Based on the volcano plot, more than 100 microRNAs were differentially expressed in LAMs compared with macrophages in control mice. Next, five differentially expressed microRNAs were selected and verified by qRT-PCR in LAMs from spleen. The results showed that miR-451a and miR-155-5p in spleen LAMs were significantly upregulated in LAMs from spleen. Overexpression of miR-451a altered the morphology of macrophages, enhanced the phagocytic ability of macrophages, and promotes the expression of macrophage differentiation marker CD11b. Furthermore, overexpression of miR-451a had little effect on M0 macrophages, but increased the proliferation capacity of macrophages upon stimulation toward M1 or M2 phenotype. MiR-451a overexpressed-macrophages had higher level of iNOS when stimulated with LPS or IL-4 whereas there was no difference in the expression of IL-1β, IL-6, CD206 and Arg-1 between MiR-451a overexpressed-macrophages and control macrophage. Therefore, our data revealed the characteristics of the microRNA expression profile of LAMs for the first time, and verified the effect of miR-451a on macrophage in vitro. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 245 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Nan-Nan Shen ◽  
Chi Zhang ◽  
Zheng Li ◽  
Ling-Cong Kong ◽  
Xin-Hua Wang ◽  
...  

Association between microRNA (miRNA) expression signatures and atrial fibrillation has been evaluated with inconsistent findings in different studies. This study aims to identify miRNAs that actually play vital role in pathophysiological process of atrial fibrillation and explore miRNA-targeted genes and the involved pathways. Relevant studies were retrieved from the electronic databases of Embase, Medline, and Cochrane Library to determine the miRNA expression profiles between atrial fibrillation subjects and non-atrial fibrillation controls. Robustness of results was assessed using sensitivity analysis. Subgroup analyses were performed based on species, miRNA detection method, sample source, and ethnicity. Quality assessment of studies was independently conducted according to QUADAS-2. Bioinformatics analysis was applied to explore the potential genes and pathways associated with atrial fibrillation, which were targeted by differentially expressed miRNAs. Form of pooled results was shown as log10 odds ratios (logORs) with 95% confidence intervals (CI), and random-effects model was used. In total, 40 articles involving 283 differentially expressed miRNAs were reported. And 51 significantly dysregulated miRNAs were identified in consistent direction, with 22 upregulated and 29 downregulated. Among above-mentioned miRNAs, miR-223-3p (logOR 6.473; P < 0.001) was the most upregulated, while miR-1-5p (logOR 7.290; P < 0.001) was the most downregulated. Subgroup analysis confirmed 53 significantly dysregulated miRNAs (21 upregulated and 32 downregulated) in cardiac tissue, with miRNA-1-5p and miRNA-223-3p being the most upregulated and downregulated miRNAs, respectively. Additionally, miR-328 and miR-1-5p were highly blood-specific, and miR-133 was animal-specific. In the detection method sub-groups, miRNA-29b and miRNA-223-3p were differentially expressed consistently. Four miRNAs, including miRNA-223-3p, miRNA-21, miRNA-328, and miRNA-1-5p, were consistently dysregulated in both Asian and non-Asian. Results of sensitivity analysis showed that 47 out of 51 (92.16%) miRNAs were dysregulated consistently. Totally, 51 consistently dysregulated miRNAs associated with atrial fibrillation were confirmed in this study. Five important miRNAs, including miR-29b, miR-328, miR-1-5p, miR-21, and miR-223-3p may act as potential biomarkers for atrial fibrillation. Impact statement Atrial fibrillation (AF) is considered as the most common arrhythmia, and it subsequently causes serious complications including thrombosis and heart failure that increase the social burden. The definite mechanisms underlying AF pathogenesis remain complicated and unclear. Many studies attempted to discover the transcriptomic changes using microarray technologies, and the present studies for this hot topic have assessed individual miRNAs profiles for AF. However, results of different articles are controversial and not each reported miRNA is actually associated with the pathogenesis of AF. The present systematic review and meta-analysis identified that 51 consistently dysregulated miRNAs were associated with AF. Of these miRNAs, five miRNAs (miRNA-1-5p, miRNA-328, miRNA-29b, miRNA-21, and miRNA-223-3p) may act as novel biomarkers for AF. The findings could offer a better description of the biological characteristics of miRNAs, meanwhile might serve as new target for the intervention and monitoring AF in future studies.


2006 ◽  
Vol 18 (2) ◽  
pp. 120
Author(s):  
Z. Beyhan ◽  
P. Ross ◽  
A. Iager ◽  
A. Kocabas ◽  
K. Cunniff ◽  
...  

Identification of genes implicated in the biological processes of somatic cell nuclear transfer will improve our understanding of reprogramming events, i.e. the transformation of a lineage-committed cell into a pluripotent one. In addition, the gene expression profile of cloned embryos can help explain the widely reported developmental failures in cloned animals. In this study, we investigated global gene expression profiles of bovine in vitro-fertilized and cloned embryos using Gene Chip Bovine Genome Arrays (Affymetrix, Inc., Santa Clara, CA, USA). For the generation of cloned bovine blastocysts from two adult fibroblast lines (C and D), we employed methods previously proven to generate live offspring and compared these offspring to in vitro-produced blastocysts. Total RNA isolated from groups of 10 blastocysts was amplified by a template-switching PCR. Amplified cDNAs were used to synthesize biotin-labeled antisense RNAs (aRNAs) during and in vitro transcription reaction. Labeled aRNAs were hybridized to microarrays as described by the manufacturer. Experiments were performed in four replicates. Expression data were analyzed using the Significance Analysis of Microarrays (SAM; Tusher et al. 2001 Proc. Natl. Acad. Sci. 98, 5116-5121) procedure and software. Overall, 48.4% and 46% of 23 000 bovine transcripts spotted on the arrays were present in cloned and in in vitro-produced control blastocysts, respectively. The SAM procedure identified 43 genes that changed at least 1.5-fold, with an estimated false discovery rate (FDR) of 20%. Comparison of gene expression between NT embryos produced from two different cell lines and IVF controls with the same criteria revealed 6 (clones from cell line C vs. IVF) and 46 (clones from cell line D vs. IVF) differentially expressed genes. The number of transcripts expressed differentially between the cloned embryos with different donor cell origin was 437. Of the 43 differentially expressed transcripts in cloned blastocysts, 13 have unknown functions and the rest of the genes related to cell structure (tuftelin, desmoplakin), cell cycle/mitosis (Kinesin like 4, katanin, stathmin, PCNA), energy metabolism (lactate dehydrogenase, ATPsynthase, lipid-binding protein, keto acid dehydrogenase E1, metallothionein), and cell signaling (GTP-binding protein1, GTP binding stimulatory protein). Our results indicate that expression profiles of cloned blastocysts could be affected by somatic donor cell.


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


Sign in / Sign up

Export Citation Format

Share Document