scholarly journals Polyphenol-rich extract of Ocimum gratissimum leaves Prevented Toxic Effects of Cyclophosphamide on the kidney Function of Wistar rats

Author(s):  
Quadri K. Alabi ◽  
Rufus O. Akomolafe ◽  
Joseph G. Akomolafe ◽  
Ayodeji Aturamu ◽  
Mokolade S. Ige ◽  
...  

Abstract Background Cyclophosphamide (CP) is one of the potent and low cost chemotherapy used in clinical setting against a variety of tumors. However, its association with nephrotoxicity limits its therapeutic use. Ocimum gratissimum leaf is a natural plant with numerous pharmacological and therapeutic efficacies, such as antioxidant, anti-inflammation, and anti-apoptotic properties.Methods The present study was designed to evaluate the protective effect of Ocimum gratissimum (OG) against CP-induced kidney dysfunction in rats. Rats were pre-treated with 400 mg/kg b.w. of polyphenol-rich Ocimum gratissimum leaves (PREOG) for 4 days and then 50 mg/kg b.w. of CP was co-administered from day 5 to day 7 along with PREOG. Markers of renal function and oxidative stress, food and water intake, electrolytes, aldosterone, leukocytes infiltration, inflammation and histopathological alteration were evaluated.Results Obvious renal inflammation and kidney injuries were observed in CP treated groups. PREOG administration prevented oxidative stress, kidney injuries, attenuated inflammation, increased aldosterone production and reduced sodium and water loss in rats. PREOG also decreased the plasma concentrations of Interleukin-(IL)-6, C-reactive protein and activity of myeloperoxidase and malondialdehyde in CP treated rats.Conclusion OG prevented kidney injury and enhanced renal function via inhibiting inflammation and oxidant-induced CP toxicity. The efficacy of OG is related to the presence of various phytochemicals in the plant.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Quadri K. Alabi ◽  
Rufus O. Akomolafe ◽  
Joseph G. Omole ◽  
Ayodeji Aturamu ◽  
Mokolade S. Ige ◽  
...  

Abstract Background Cyclophosphamide (CP) is one of the potent and low cost chemotherapy used in clinical setting against a variety of tumors. However, its association with nephrotoxicity limits its therapeutic use. Ocimum gratissimum leaf is a medicinal plant with numerous pharmacological and therapeutic efficacies, such as antioxidant, anti-inflammation, and anti-apoptotic properties. Methods The present study was designed to evaluate the protective effect of Ocimum gratissimum (OG) against CP-induced kidney dysfunction in rats. Rats were pre-treated with 400 mg/kg b.w. of leave extract of Ocimum gratissimum (Ocimum G.) for 4 days and then 50 mg/kg b.w. of CP was co-administered from day 5 to day 7 along with Ocimum G. Markers of renal function and oxidative stress, food and water intake, electrolytes, aldosterone, leukocytes infiltration, inflammation and histopathological alteration were evaluated. Results Obvious renal inflammation and kidney injuries were observed in CP treated groups. However, administration of leave extract of Ocimum G. prevented oxidative stress, kidney injuries, attenuated inflammation, increased aldosterone production and reduced sodium ion and water loss in rats. The plasma creatinine, urea and urine albumin concentration were normalized after the administration of Ocimum G. extract in rats treated with CP. Ocimum G. also decreased the plasma concentrations of Interleukin-(IL)-6, C-reactive protein and activity of myeloperoxidase and malondialdehyde in CP treated rats. Conclusion Ocimum G. prevented kidney injury and enhanced renal function via inhibiting inflammation and oxidant-induced CP toxicity. The efficacy of Ocimum G. is related to the presence of various phytochemicals in the plant.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hao Wang ◽  
Weiwei Xia ◽  
Guangfeng Long ◽  
Zhiyin Pei ◽  
Yuanyuan Li ◽  
...  

Cisplatin is extensively used and is highly effective in clinical oncology; nevertheless, nephrotoxicity has severely limited its widespread utility. Isoquercitrin (IQC), a natural flavonoid widely found in herbage, is well known and recognized for its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the potential effects and mechanism of IQC in cisplatin-induced acute kidney diseases remain unknown. In this study, we postulated the potential effects and mechanism of IQC upon cisplatin exposure in vivo and in vitro. For the in vivo study, C57BL/6J mice were pretreated with IQC or saline (50 mg/kg/day) by gavage for 3 days before cisplatin single injection (25 mg/kg). Renal function, apoptosis, inflammation, oxidative stress and p-ERK were measured to evaluate kidney injury. In vitro, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cell line (HK2) were pretreated with or without IQC (80 μM for mPTCs and 120 μM for HK2) for 2 h and then co-administrated with cisplatin for another 24 h. Apoptosis, inflammation, ROS and p-ERK of cells were also measured. In vivo, IQC administration strikingly reduced cisplatin-induced nephrotoxicity as evidenced by the improvement in renal function (serum creatinine and blood urea nitrogen), kidney histology (PAS staining), apoptotic molecules (cleaved caspase-3, caspase-8, Bax and Bcl-2), inflammatory cytokines (IL-1β, IL-6, TNF-α, and COX-2), oxidative stress (MDA and total glutathione) and p-ERK. In line with in vivo findings, IQC markedly protected against cisplatin-induced cell injury in mPTCs and HK2 cells. Collectively, these findings demonstrated that IQC administration could significantly protect against cisplatin nephrotoxicity possibly through ameliorating apoptosis, inflammation and oxidative stress accompanied by cross talk with p-ERK. Furthermore, IQC may have potential therapeutic uses in the treatment of cisplatin-induced acute kidney injury.


2018 ◽  
Vol 40 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Natassia Alberici Anselmo ◽  
Leticia Colombo Paskakulis ◽  
Renata Correia Garcias ◽  
Fernanda Fortuci Resende Botelho ◽  
Giovana Queda Toledo ◽  
...  

ABSTRACT Introduction: Ischemia-reperfusion (IR) injury results from inflammation and oxidative stress, among other factors. Because of its anti-inflammatory and antioxidant properties, the Brazil nut (BN) might attenuate IR renal injury. Objective: The aim of the present study was to investigate whether the intake of BN prevents or reduces IR kidney injury and inflammation, improving renal function and decreasing oxidative stress. Methods: Male Wistar rats were distributed into six groups (N=6/group): SHAM (control), SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75 or 150 mg of BN. The IR procedure consisted of right nephrectomy and occlusion of the left renal artery with a non-traumatic vascular clamp for 30 min. BN was given daily and individually for 7 days before surgery (SHAM or IR) and maintained until animal sacrifice (48h after surgery). We evaluated the following parameters: plasma creatinine, urea, and phosphorus; proteinuria, urinary output, and creatinine clearance; plasmatic TBARS and TEAC; kidney expression of iNOS and nitrotyrosine, and macrophage influx. Results: Pre-treatment with 75 mg of BN attenuated IR-induced renal changes, with elevation of creatinine clearance and urinary output, reducing proteinuria, urea, and plasmatic phosphorus as well as reducing kidney expression of iNOS, nitrotyrosine, and macrophage influx. Conclusion: Low intake of BN prior to IR-induced kidney injury improves renal function by inhibition of macrophage infiltration and oxidative stress.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
masanobu yoshida ◽  
Hirofumi Tomiyama ◽  
Chisa Matsumoto ◽  
Jiko Yamada ◽  
Kazuki Shiina ◽  
...  

Objective: This study was conducted to clarify whether subjects with mildly impaired renal function {glomerular filtration rate (GFR) = 60 – 89 mL/min per 1.73 m 2 body surface area} show increased arterial stiffness, microinflammation and oxidative stress as compared to those with normal renal function, and also to examine the association of these parameters with GFR loss in middle-aged Japanese men with a low cardiovascular risk. Methods and Results: The brachial-ankle pulse wave velocity (baPWV) and plasma levels of C-reactive protein (CRP) and lipid peroxides (LipOX) were measured in 1873 male subjects (42±9 years old). The baPWV, but not the CRP or LipOX, was increased in subjects with mildly impaired renal function (Figure ). Multiple linear regression analysis demonstrated a significant relationship between the GFR and the baPWV independent of the conventional atherosclerotic risk factors (beta = −0.08, t-value = −2.19, p<0.05). This relationship was significant even in subjects with renal function within the normal range. Conclusions : Increased arterial stiffness, rather than microinflammation and/ or oxidative stress, may underlie the elevated cardiovascular risk in subjects with mildly impaired renal function. The association between GFR loss and arterial stiffness seems to precede the occurrence of microinflammation and/or oxidative stress associated with GFR loss.


2020 ◽  
Vol 85 (12-13) ◽  
pp. 1591-1602
Author(s):  
N. V. Andrianova ◽  
D. B. Zorov ◽  
E. Y. Plotnikov

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Gangyi Zhu ◽  
Yanting Yu ◽  
Xiaoyan Wang

Candesartan is one of angiotensin II type1 receptor blockers(ARB) and commonly used as first-line antihypertensive treatment. Low salt diet is often recommended by clinicians to the patients with hypertension and kidney diseases. However,it is not clear whether salt restriction is beneficial to the patients taking ARB. In order to explore this problem, the impacts of different salt diets on blood pressure (BP),renal function and oxidative stress were determined in 2-3 months old male Sprague Dawley rats treated with candesartan. The rats were randomly divided into 4 groups fed agar-gelled food rationally with NaCl content at 0.01%, 0.8%, 2% and 4% respectively(4-7 rats/group) while all rats were intraperitoneally injected with candesartan at 1mg / kg / day for 7 days. SBP started to decline on day 2 in all except 4% NaCl groups relative to day 0 (recorded 5-6 hrs before the first injection). On day 6, systolic BP (mmHg, tail-cuff, Softron,BP-98A) was lower in 0.8% (103.7+2.3) & 0.01% (101.6+3) groups than 2% (113.5+4.1) & 4% (129.9+4.6) groups (one way ANOVA,LSD test, P<0.05) and correlated positively with food NaCl intakes (R 2 =0.9832). DBP was changed in a similar pattern as SBP. Serum creatinine (μmol/L) was higher in 0.01% group (225+39) than groups of 0.8% (1328+350), 2% (2095+242) and 4% (1576+703) while creatinine clearance (ml/day) was lower in 0.01% group (69.3+9) than groups of 0.8% (43.7+9), 2%(27.7+2) and 4%(29+0.6). In order to determine whether oxidative stress plays any role in the BP regulation and renal function maintenance, we also checked renal protein expression of ROS components. Relative to 0.8% group, renal NOXs were not altered in 0.01% group while NOX1 (145+18,% of 0.8% group), NOX2 (240+54) and NOX4 (197+41) was higher in 2% group than other groups. Mn-SOD (77+7.8), not Cu-Zn SOD, was decreased while HO1 (170+16), not HO2, was increased in 0.01% group. Renal abundance of nitrotyrosine was lower in 0.01% than other groups indicating a decreased oxidative stress, possibly caused by increase in HO1. We concluded that salt restriction with candesartan is beneficial to antihypertensive effect of AT1R blockade but disadvantage to maintenance of renal function. Thus, cautions to choice of low salt intakes are necessary when taking ARB agents.


2017 ◽  
Vol 5 (1) ◽  
pp. 71 ◽  
Author(s):  
Wael Alanazi ◽  
Mohammad Uddin ◽  
Selim Fakhruddin ◽  
Keith Jackson

Background: Recurrent insulin-induced hypoglycemia (RIIH) is an avoidable consequence in the therapeutic management of diabetes mellitus. RIIH has been implicated in causing hypertension through an increase in renal and systemic AngII production.Objective: The present study was performed to assess the hypothesis that chronic insulin treatment enhances AngII and COX2 formation which in turn increases (pro) renin receptor (PRR) expression and NADPH oxidase-mediated oxidative stress, leading to renal and cardiac injury.Methods: The present studies were conducted in Male Sprague Dawley rats treated with daily subcutaneous injections of 7u/kg insulin or saline for 14 days. On the 14th day, surgery was performed for treatment infusion (captopril 12mg/kg, NS398 0.3mg/kg or vehicle), and renal interstitial fluid sample and urine collections for biomarker measurements. At the end of the experiments, kidneys and hearts were harvested to evaluate PRR and NOX2 (NADPH oxidase subunit) expression and oxidative stress.Results: We found that RIIH enhanced AngII and COX2 activity, leading to renal PRR expression and NADPH oxidase-induced oxidative stress in the heart and kidney. 8-isoprostane was evaluated as a renal biomarker of oxidative stress, which was induced in insulin treated animals and modulated by captopril and NS398. In addition, there was a slight increase in NGAL, a urinary biomarker of acute kidney injury (AKI), in insulin treated animals when compared to control.Conclusion: These results demonstrate that RIIH induces renal PRR expression and oxidative stress through increasing AngII and COX2 in the heart and kidney, leading to end-organ damage.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 499
Author(s):  
Hao-Hao Shi ◽  
Ying Guo ◽  
Li-Pin Chen ◽  
Cheng-Cheng Wang ◽  
Qing-Rong Huang ◽  
...  

Prevention of acute kidney injury caused by drugs is still a clinical problem to be solved urgently. Astaxanthin (AST) and docosahexaenoic acid (DHA) are important marine-derived active ingredients, and they are reported to exhibit renal protective activity. It is noteworthy that the existing forms of AST in nature are mainly fatty acid-acylated AST monoesters and diesters, as well as unesterified AST, in which DHA is an esterified fatty acid. However, no reports focus on the different bioactivities of unesterified AST, monoesters and diesters, as well as the recombination of DHA and unesterified AST on nephrotoxicity. In the present study, vancomycin-treated mice were used to evaluate the effects of DHA-acylated AST monoesters, DHA-acylated AST diesters, unesterified AST, and the recombination of AST and DHA in alleviating nephrotoxicity by determining serum biochemical index, histopathological changes, and the enzyme activity related to oxidative stress. Results found that the intervention of DHA-acylated AST diesters significantly ameliorated kidney dysfunction by decreasing the levels of urea nitrogen and creatinine, alleviating pathological damage and oxidative stress compared to AST monoester, unesterified AST, and the recombination of AST and DHA. Further studies revealed that dietary DHA-acylated AST esters could inhibit the activation of the caspase cascade and MAPKs signaling pathway, and reduce the levels of pro-inflammatory cytokines. These findings indicated that the administration of DHA-acylated AST esters could alleviate vancomycin-induced nephrotoxicity, which represented a potentially novel candidate or therapeutic adjuvant for alleviating acute kidney injury.


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2010 ◽  
Vol 2 (3) ◽  
pp. 131
Author(s):  
Waode Nurfina ◽  
Irawan Yusuf ◽  
Mansyur Arif

BACKGROUND: The low inflammatory state that accompanies the Metabolic Syndrome (MetS) associates with the overexpression of oxidative stress. Ferritin and Transferrin serum are often used to measure iron status and their concentrations are altered in several metabolic conditions. We hypothesized that concentration of Ferritin and Transferrin serum increase in Metabolic Syndrome (MetS) and correlate with the inflammation and oxidative stress.METHODS: We studied 65 male MetS patients, aged 43.26±7.16 years. Iron metabolism was measured by concentration of Ferritin and Transferrin serums, while inflammatory and oxidative stress by high sensitivity C-reactive Protein (hsCRP) and F2-Isoprostane.RESULTS: Concentration of Ferritin 315.70±188.63 ng/L and Transferrin 2.36±0.31 g/L increased along with increasing components of MetS. Concentration of Ferritin serum had a positive correlation with hsCRP (r=0.220) and F2-Isoprostane (r=0.023).CONCLUSION: Serum concentration of Ferritin increased in the MetS and correlates with hsCRP and F2-Isoprostane.KEYWORDS: metabolic syndrome, ferritin, transferrin, hsCRP, F2-isoprostane


Sign in / Sign up

Export Citation Format

Share Document