scholarly journals Candida Rugosa Lipase Immobilized on Hydrophobic Support Accurel MP 1000 in the Synthesis of Emollient Esters

Author(s):  
Luiz Henrique Sales de Menezes ◽  
Eliezer Luz do Espírito Santo ◽  
Marta Maria Oliveira dos Santos ◽  
Iasnaia Maria de Carvalho Tavares ◽  
Adriano Aguiar Mendes ◽  
...  

Abstract In the present work, Candida rugosa lipase (CRL) was immobilized by physical adsorption in organic medium on Accurel MP 1000 (AMP) with a protein load of 6.5 mg g-1 (mg protein/g support). CRL-AMP was applied with 5 and 10% of catalyst/volume of medium (m v-1) in esterification reactions of stearic acid with lauryl and cetyl alcohols producing the wax esters such as dodecanoyl octadecanoate 1 and hexadecanoyl octadecanoate 2 in a heptane medium. Six reaction cycles were studied to evaluate the stability and recyclability of the prepared biocatalyst. The specific activity (Asp) for CRL-AMP was 200 ± 20 U mg-1. Its catalytic activity was 1300 ± 100 U g-1. CRL-AMP was used in the synthesis of esters in heptane medium with a 1:1 acid:alcohol molar ratio at 45°C and 200 rpm. In synthesis 1, conversion was 62.5 ± 3.9% in 30 min at 10% m v-1 and 56.9 ± 2.8% in 54 min at 5% m v-1, while in synthesis 2, conversion was 79.0 ± 3.9% in 24 min at 10% m v-1, and 46.0 ± 2.4% in 54 min at 5% m v-1. Reuse tests after 6 consecutive cycles of reaction showed that the biocatalyst retained approximately 50% of its original activity for both reaction systems. CRL-AMP showed a high potential in the production of wax esters, since it started from low enzymatic load and high specific activities and conversions were obtained, in addition to allowing an increase in stability and recyclability of the prepared biocatalyst.

Biocatalysis ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Daniele Spinelli ◽  
Simone Coppi ◽  
Riccardo Basosi ◽  
Rebecca Pogni

AbstractLipase from Candida rugosa was immobilized onto the modified Eupergit®C. The support was treated with ethylenediamine and subsequently activated with glutaraldehyde. Enzyme immobilization efficiency was 85%. The optimum pH was close to 6.5 for both the free and immobilized lipase. Immobilized lipase retained its maximum activity in a temperature range of 55 – 60°C. Subsequently, ethyl butyrate synthesis was investigated using immobilized enzyme by esterification of butyric acid with ethanol in solvent-free conditions (23% product yield) and using hexane as a solvent (65% product yield). The acid-alcohol molar ratio and different enzyme amounts were tested as efficient reaction parameters. The biocatalyst maintained 60% of its activity when reused in 8 successive batch reactions in organic solvent. Therefore, the immobilized lipase has demonstrated its potential in practical applications such as short-chain ester synthesis for the food industry.


2014 ◽  
Vol 20 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Kumar Singh ◽  
Mausumi Mukhopadhyay

In the present work, solvent free olive oil glycerolysis for the monoglycerides (MG) and diglycerides (DG) production with an immobilized Candida rugosa lipase was studied. MG and DG production were optimized using experiment design techniques and response surface methodology (RSM). RSM based on five-level, a five-variable central composite design (CCD) was used to optimize MG and DG production: reaction time, temperature, molar ratio of glycerol to oil, amount of lipase, and water content in glycerol. The reaction time, temperature, and amount of lipase were observed to be the most significant factors on the process response. The immobilized Candida rugosa lipase revealed optimum yield of MG and DG as 38.71 and 40.45 wt% respectively following a 5h reaction time with 0.025 g of lipase and 5% water content in glycerol at 40?C temperature. The yield of MG and DG production can be enhanced 1.5 fold by RSM.


2015 ◽  
Vol 18 (1) ◽  
pp. 29-39
Author(s):  
Nhu Thi Tuyet Nguyen ◽  
Nguyen Thi Nguyen ◽  
Hoa Ngoc Phan

In this work, lipase from Candida rugosa (LCR) was used as a catalyst for the transesterification reaction of fish oil with methanol. The research process consists of three stages: determine the material properties and the activity of the enzyme from Candida rugosa, transeter of fish oil with methanol catalyzed by the enzyme lipase, evaluation indicators of the quality of biodiesel obtained. Fish oil contains 62% unsaturated fatty acid, acid value of 2.2 mg KOH/g. Activity and specific activity of enzyme were respectively 1064 U/mg enzyme and 2782 U/mg protein. Factors affecting the efficiency of conversion of fatty acid methyl esters - FAME were investigated: the molar ratio of methanol/fish oil, ratio of enzyme/fish oil, temperature reaction, pH reaction, concentration of buffer and reaction time. Yield of biodiesel conversion was 92.65% with optimal conditions: rate of methanol/fish oil was 4:1, the ratio of enzyme/substract was 2%, reaction temperature was 40°C, additional 10% buffer solution pH 7 with 96 hour response time. Products biodiesel obtained FAME components accounted for 98.94%; density at 15°C is 0.8816 g/ml; no free water and glycerine, consistent with the original standard biodiesel (B100) (TCVN 7717:2007). However, the acid value of 1.7 mg KOH products/g higher than the allowable value.


Author(s):  
Nur Iilani Abd Halin ◽  
Maan Fahmi Rashid Al-Khatib ◽  
Hamzah Mohd. Salleh ◽  
Mohamed Mahmoud Nasef

This paper demonstrates a simplified procedure for the preparation of a nylon-6 microfibers based support for the immobilization of Candida rugosa lipase via covalent attachment to enhance the stability and reusability of lipase. The preparation of the support was done by radiation induced graft copolymerization (RIGC) of vinyl benzyl chloride (VBC) onto nylon-6 microfibers followed by amination with ethanolamine to facilitate the immobilization of lipase. Fourier transfer infra red (FTIR) and scanning electron microscope (SEM) were used to study the chemical and physical changes following grafting, amination and immobilization. Response surface methodology (RSM) was applied for the optimization of lipase immobilization on the aminated microfibers. The optimization parameters were incubation time, pH, and lipase concentration. Moreover, this study investigated the effect of temperature, pH, and storage stability and reusability on the lipase in its immobilized and free forms. The developed model from RSM showed an R2 value of 0.9823 and P-value < 0.001 indicating that the model is significant. The optimum temperatures for both immobilized and free lipases were 45 °C, whereas the best pH values for lipase activity were at pH 8 and pH 7, respectively. This study also identifies values for KM and Vmax for both immobilized and free lipase accordingly. Based on the results, immobilized lipase had significantly improved the stability and reusability of lipase compared to that in free forms. Copyright © 2019 BCREC Group. All rights reserved 


2006 ◽  
Vol 71 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Dejan Bezbradica ◽  
Ivana Karalazic ◽  
Nevena Ognjanovic ◽  
Dusan Mijin ◽  
Slavica Siler-Marinkovic ◽  
...  

In this study, the feasibility of the synthesis of various flavor esters catalyzed by a commercial lipase from Candida rugosa was investigated and the process parameters were optimized. Lipase from C. rugosa successfully catalyzed the synthesis of 19 esters. The highest yields, of more than 90 % after 20 h, were observed in the synthesis of short-chain esters, pentyl propanoate, isopentyl butanoate, and butyl butanoate. Increasing the number of carbon atoms of both substrates above 8 caused a significant decrease of the initial reaction rates and the final yields. The enzyme showed surprisingly low affinity towards pentanoic acid and hexanoic acid, compared with the higher homologues, octanoic acid and decanoic acid. In addition to the number of carbon atoms, the structure of the substrates had a significant influence on the enzyme activity. Namely, the activity of the enzyme towards isopropanol was significantly lower compared with n-propanol. Additionally, cis-9-octadecenoic acid was a better substrate than octadecanoic acid, its saturated analogue.


1990 ◽  
Vol 36 (1) ◽  
pp. 59-64
Author(s):  
R N Weijers ◽  
R de Bruijn ◽  
J Mulder ◽  
H Kruijswijk

Abstract Lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) isoenzyme-3 (LD-3) has been isolated in milligram quantities from human erythrocytes. Using an improved procedure--which involves complete hemolysis of the erythrocytes, diethylaminoethyl (DEAE)-Sephacel column chromatography, and 5'-AMP-Sepharose 4B affinity chromatography--we obtained 23,000-fold purified isoenzyme from the crude hemolysate (overall yield about 90%). The final product was homogeneous on polyacrylamide disc gel electrophoresis and had a specific activity of about 435 kU/g. Its amino acid composition is presented. With the eventual aim to make visible and isolate IgA kappa antibody-secreting B lymphocytes, we developed reproducible methods for preparing fluorescein isothiocyanate isomer-1-conjugated LD-3 with a fluorescein/LD-3 molar ratio between 1.3 and 3.3, and biotinylated LD-3 with a biotin/LD-3 molar ratio between 1.3 and 2.5. In evaluating the stability of these two conjugates, we determined that they still can react with IgA kappa to form the IgA kappa (LD-3)2 complex.


2018 ◽  
Vol 8 (2) ◽  
pp. 38
Author(s):  
Heri Hermansyah ◽  
Septian Marno ◽  
Rita Arbianti ◽  
Tania Surya Utami ◽  
Anandho Wijanarko

Non-alcoholic route biodiesel synthesis using suspended Candida rugosa lipaseBiodiesel synthesis using biocatalyst can improve the disadvantage of alkali catalyst. Biocatalysts are not homogeneously mixed, so its separation is easy and it is also able to direct the reaction specifically without any unwanted side reactions. However, the application of biocatalysts in alcoholic environment degrades the biocatalyst quickly, and its stability suffers. To solve this problem, this research proposes to perform biodiesel synthesis through a non-alcohol route so that the activity and stability of the biocatalyst can be preserved. The biocatalyst used was Candida rugosa lipase in suspended form. Methyl acetate which served as alkyl group source was reacted with triglycerides from palm oil. The reaction was performed in a batch reactor, and HPLC was used to analyze reactants and product concentrations. Research results indicated that more than 86% of fatty acid chains from the palm oil triglycerides were converted to biodiesel at a biocatalyst concentration of 4 %-wt of the substrate, oil:alkyl molar ratio of 1:12, and reaction period of 50 hours. Furthermore, the kinetic data obtained using suspended enzyme, were also shown by concentration profile of tri-, di-, monoglycerides and biodiesel versus time in 50 hours reaction time.Keywords: biodiesel synthesis, interesterification, Candida rugosa lipase, non-alcohol route, triglycerideAbstrakSintesis biodiesel menggunakan biokatalis mampu memperbaiki kelemahan katalis alkali, yaitu tidak bercampur homogen, sehingga pemisahannya mudah dan mampu mengarahkan reaksi secara spesifik tanpa adanya reaksi samping yang tidak diinginkan. Namun penggunaan biokatalis di lingkungan beralkohol menyebabkan biokatalis terdeaktivasi secara cepat dan stabilitasnya menjadi buruk. Untuk menyelesaikan masalah tersebut, dalam riset ini diusulkan melakukan sintesis biodiesel melalui rute non-alkohol agar aktivitas dan stabilitas biokatalis tetap tinggi. Biokatalis yang digunakan adalah Candida rugosa lipase dalam bentuk tersuspensi. Metil asetat sebagai pensuplai gugus alkil direaksikan dengan trigliserida dari minyak kelapa sawit.  Reaksi dilakukan dalam reaktor batch dan HPLC digunakan untuk menganalisa reaktan dan produk. Hasil penelitian menunjukkan bahwa lebih dari 86% rantai asam lemak dari trigliserida minyak kelapa sawit berhasil di konversikan menjadi biodiesel pada kondisi konsentrasi biokatalis sebesar 4 %-wt substrat, rasio mol minyak:alkil sebesar 1:12 selama 50 jam reaksi. Selanjutnya, data kinetika menggunakan enzim tersuspensi juga ditunjukkan melalui profil konsentrasi tri-, di-, mono, dan biodiesel  terhadap waktu  selama 50 jam.Kata Kunci: sintesis biodiesel, interesterifikasi, Candida rugosa lipase, rute non-alkohol, trigliserida


2019 ◽  
Vol 19 (4) ◽  
pp. 1043 ◽  
Author(s):  
Emmanuel Onoja ◽  
Roswanira Abdul Wahab

Till date, studies that investigated the effect of glutaraldehyde concentration on catalytic efficacy of biocatalyst developed with silica-derived from oil palm leaves (OPL) as support, are unknown. The study presents the preparation of a support consisting of silica extracted from OPL coated over magnetite (G/A/SiO2-M) for the immobilization of Candida rugosa lipase (CRL). Herein, the effect of glutaraldehyde concentration on the catalytic efficacy of immobilized CRL was assessed by the enzymatic production of butyl butyrate as a model. Fourier transform infrared (FTIR) spectra and immobilization parameters indicated that covalent bound CRL on functionalized OPL-derived silica-magnetite composite activated with 4% (v/v) glutaraldehyde solution (100 mM, pH 7.0) (CRL/G/A/SiO2-M) and pretreated in toluene, resulted in a protein loading and an immobilization yield of 68.3 mg/g and 74.3%, respectively. The resultant CRL/G/A/SiO2-M biocatalyst which specific activity was 61.9 U/g catalyzed the esterification production of 76.5% butyl butyrate in just 3 h, as confirmed by analyses of the purified ester using FTIR and 1H NMR spectroscopy. Hence, the finding envisages the promising use of G/A/SiO2-M support fabricated from discarded OPL as a carrier for immobilization and activation of CRL, in conjunction to being a good alternative source of renewable silica.


Sign in / Sign up

Export Citation Format

Share Document