scholarly journals Comparison of Used Locomotive Fuel Filters after Using B20 and B0 Fuels

Author(s):  
ihwan haryono ◽  
Muhammad Ma'ruf ◽  
Hari Setiapraja ◽  
Dieni Mansur

Abstract The automotive and non-automotive sectors have followed the Indonesian government's policy regarding applying high concentration biodiesel use. Some issues arise from the effects of using a high biodiesel concentration on engine components, such as filter blocking or degradation. Therefore, various parties have challenged to improve both in terms of fuel quality and engine components. Meanwhile, testing of high concentration biodiesel fuel (blending ratio above 10 %) was still rarely published in the rail transport sector. Therefore, the rail test aimed to evaluate the effect of B20 fuel on locomotive engine components. The test was conducted during two periodic maintenance (6 months) using two trains with B20 and B0 fuels as a comparison. This study discusses the effect of B20 on fuel filters by performing tests on used filters for one periodic maintenance (3 months). The morphological analysis of deposits was conducted using a digital microscope, while TGA, GC-MS, FTIR, and elemental analysis were used to determine its components. The results showed that biodiesel filtration in the main filter was higher, and the subsequent filtration showed fewer deposits than that of pure diesel. Various types of fuel filter deposits have been identified, such as hydrocarbons and fatty acid methyl esters.

2013 ◽  
Vol 465-466 ◽  
pp. 260-264 ◽  
Author(s):  
Hanis Zakaria ◽  
Amir Khalid ◽  
Mohamad Farid Sies ◽  
Norrizal Mustaffa

Biofuels based on vegetable oils offer the advantage being a sustainable and environmentally attractive alternative to conventional petroleum based fuel. The key issue in using vegetable oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. This provides a critical review of current understanding of main factor in storage method which affecting the biodiesel properties and characteristics. In the quest for fulfill the industry specifications standard; the fuel should be stored in a clean, dry and dark environment. Water and sediment contamination are basically housekeeping issues for biodiesel. Degradation by oxidation yields products that may compromise fuel properties, impair fuel quality and engine performance. The effect of storage method on the fuel properties and burning process in biodiesel fuel combustion will strongly affects the exhaust emissions.


Author(s):  
Shinya Ikematsu ◽  
Ipputa Tada ◽  
Yasuma Nagasaki

Petroleum reserves have been decreasing in recent years and microalgae are attractive as a potential source of new biomass petroleum. Microalgae are unicellar microscopic algae and most species microalgae produce lipids. In particular, Botryococcus braunii produces large amount of lipids found with nearly 70% on the basis of the dry weight. This chapter reviews high lipid-producing microalgae found from Okinawa area around National Institute of Technology, Okinawa College (NIT, Okinawa). The microalgae collected were isolated on an AF-6 agar plates, and incubated in AF-6 medium. The fatty acids were extracted from the algae, converted into fatty acid methyl esters, and analysed by GC/MS. As a result, two microalgae strains were identified that the produced fatty acids was loaded in the algae with nearly 20% in the dry weight base. In addition, these two microalgae strains produced palmitic acid as nearly 40% of the total produced lipids. Therefore, the two microalga strains isolated are potentially and highly efficient for the organisms applied for the production of biodiesel fuel.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2204 ◽  
Author(s):  
Violeta Makareviciene ◽  
Egle Sendzikiene ◽  
Milda Gumbyte

Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions.


2009 ◽  
Author(s):  
Harold Steppuhn ◽  
Mark A Stumborg ◽  
Tanya McDonald ◽  
Rob Dunn

2018 ◽  
Vol 67 ◽  
pp. 02014
Author(s):  
Ary Budi Mulyono ◽  
Bambang Sugiarto ◽  
Muchammad Taufiq Suryantoro ◽  
Hari Setiapraja ◽  
Siti Yubaidah ◽  
...  

The usage of biodiesel has been encouraged by government based on the issuance of The Regulation of Minister of Energy and Mineral Resources No. 12/2015 on the supply, utilization, and administration of biofuels as other alternative fuels. This regulation sets mandatory biodiesel mixture by 30 percent for national energy consumption by 2025. But the usage of biodiesel with a larger percentage in diesel engines still leaves some problems with the decline of biodiesel fuel quality and the formation of deposits in combustion chamber and injectors. The purpose of this study is to compare biodiesel fuel (B20) with Hydrotreated Biodiesel (HBD) in an experiment by using fuel droplet method on a plate to observe the characteristics and mechanism of deposit formation. Plates are heated in few temperature variations in a sealed test rig so that the conditions are similar to the engine real conditions. Deposit growth of Hydrotreated Biodiesel as known as Hydrotreated Vegetable Oil (HVO) less better than Fatty Acid Methyl Ester (FAME). It may occurred because the lubricity of HVO is very low due to the absence of sulfur and oxygen compounds in the fuel, that causes oxidation that can lead to deposits in the combustion chamber.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6118
Author(s):  
Iman K. Reksowardojo ◽  
Hari Setiapraja ◽  
Rizqon Fajar ◽  
Edi Wibowo ◽  
Dadan Kusdiana

In this study, biodiesel fuel with a ratio of 20% volume (B20) was used on vehicles that are used in common rail injection systems, complying with Euro2 emission regulations. Laboratory and road tests were conducted to evaluate the effects of B20 on performance, emissions and engine components. Using diesel fuel and B20 as reference fuels, tests were conducted using Euro2 vehicle technology to investigate the effects on emissions, fuel consumption, and power. Durability testing was run for travel distances covering 40,000 km under various road and environmental conditions, while vehicle performance and emissions tests were conducted using the ECE R84-03 and ECE R101 test methods, respectively. The results show that B20 has lower CO and hydrocarbon (HC) emissions for every distance travelled, with an average of around 30%. Particulate emission was a bit lower, averaging 3.4% for B20 compared to B0, while NOx was found to slightly increase at around 2% for B20. Due to its lower calorific value, for an average distance traveled, the fuel economy of B20 was around 0.5% higher compared to B0. Furthermore, the maximum power of B20 was 3% lower compared to that of B0 for the entire distance traveled. However, an evaluation of engine components after 40,000 km showed that B20 and B0 were similar. Moreover, vehicles using B20 tend to have a comparable durability of engine components when compared with B0.


2010 ◽  
Vol 2 (3) ◽  
pp. 165-179
Author(s):  
H. Steppuhn ◽  
T. McDonald ◽  
R. Dunn ◽  
M. A. Stumborg

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Egle Sendzikiene ◽  
Violeta Makareviciene

Abstract The ever-increasing environmental pollution from greenhouse gases motivates the search for methods to reduce it. One such method is the use of biodiesel fuels in the transport sector. Conventional biodiesel production generates up to 10% of a by-product, raw glycerol, whose amount continues to increase as biodiesel production volumes expand, but its demand remains limited. Recently, options have been analysed to replace the triglyceride transesterification process generally used in biodiesel production with an interesterification process that does not generate raw glycerol, instead yielding triacylglycerol that can be directly used as fuel for diesel engines by mixing with fatty acid esters. Additionally, triacylglycerol improves the low-temperature properties of fuel. The present article discusses triglyceride interesterification processes using various carboxylate esters of low molecular weight. Information is provided on raw materials that can be subjected to interesterification for biodiesel synthesis. The possible applications of chemical and enzymatic catalysis for triglyceride interesterification are discussed, and the influence of the catalyst amount, molar ratio of reactants, temperature and process duration on the effectiveness of interesterification is examined. The conditions and effectiveness of noncatalytic interesterification are also discussed in the article. Qualitative indicators of the products obtained and their conformity to the requirements of the European standard for biodiesel fuel are discussed.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

Fossil fuel consumption provides a negative impact on the human health and environment in parallel with the decreased availability of this valuable natural resource for the future generations to use as a source of chemical energy for all applications in energy, power, and propulsion. The diesel fuel consumption in the transport sector is higher than the gasoline in most developing countries for reasons of cost and economy. Biodiesel fuel offers a good replacement for diesel fuel in compression ignition (CI) diesel engines. Earlier investigations by the authors revealed that a blend of 70% amla seed oil biodiesel and 30% eucalyptus oil (AB70EU30) is the favorable alternative renewable fuel blend that can be used as a fuel in diesel engines. With any fuel, air/fuel mixing and mixture preparation impact efficiency, emissions, and performance in CI engines. Minor adjustments in engine parameters to improve air/fuel mixing and combustion are deployable approaches to achieve good performance with alternative fuel blends in CI engines. This paper provides the role of a minor modification to engine parameters (compression ratio, injection timing, and injection pressure) on improved performance using the above mixture of binary fuel blends (AB70EU30). The results showed that the use of AB70EU30 in modified engine resulted in higher brake thermal efficiency and lower brake specific fuel consumption compared to normal diesel for improved combustion that also resulted in very low tailpipe emissions.


2020 ◽  
Vol 850 ◽  
pp. 133-137
Author(s):  
Valdis Kampars ◽  
Ruta Kampare ◽  
Anastasija Naumova

The blends of varying proportions of biodiesel fuel containing fatty acid methyl esters and triacetin (FAME*), synthesised accordingly to Latvian patent LV 15 373 and summer diesel were prepared, analysed and compared with diesel fuel. The selected fuel properties (viscosity, density, carbon residue and cold flow properties) tested accordingly to standard LVS-EN 14214 have indicated a good potential of FAME*, obtained by synthesis of fatty acid methyl esters (FAME) by simultaneous conversion of glycerol to triacetin as a renewable diesel engine fuel. The results showed that blends containing 5 to 25% of FAME* in summer diesel yielded the properties closely matching that of diesel.Introduction


Sign in / Sign up

Export Citation Format

Share Document