scholarly journals DDX31: A Novel Functional Oncogene Promotes Migration and Proliferation of Pancreatic Cancer

Author(s):  
Yang Liu ◽  
Yongjie Xie ◽  
Jinsheng Ding ◽  
Liangliang Wu

Abstract Purpose: Pancreatic cancer is one of the most malignant cancers with rapid disease progression. Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% in exocrine pancreatic cancer. DDX31 is one of the Asp-Glu-Ala-Asp (DEAD)-box RNA helicases (DDX) family member, which has never been reported in pancreatic ductal adenocarcinoma. Through comprehensive analysis of bioinformatics screening, clinical pathological data and experiment results verification, we found DDX31 may be a promising oncogene.Patients and methods: The potential correlation between DDX3 expression and clinical feature of PDAC was analyzed, which revealed that patients with high DDX31 expression may have a poor prognosis. Elevated expression levels of DDX31 in PDAC compared with adjacent normal tissues were determined by immunohistochemical and Western blot analyses. Western blot analysis of N-cadherin, Snail, transwell, and wound healing assays was carried out to evaluate the pro-metastasis effects of DDX31 in PDAC. In vitro experiments included colony formation assay. Edu labeling assay, CCK-8, western blot analysis of Ki67, PCNA, and an in vivo subcutaneous mouse model were used to analyze the role of DDX31 in PDAC proliferation.Results: In our research, integrated bioinformatics analysis of the TCGA and GEO databases was performed to identify the metastasis and proliferation-related differentially expressed genes (DEG). DDX31 predicts strong metastasis and proliferation capacity of PDAC, was finally screened. Then, the clinical data identified that highexpression-DDX31 was correlated with pancreatic tumor size, pathological grade, and lymph node metastasis. The in vitro and vivo experiments revealed that overexpression-DDX31 promoted the migration, proliferation and cell viability of pancreatic cancer cells, these functions of DDX31 had also been proved in the knockdown results. Moreover, the EMT related markers and proliferation markers were identified to be positively regulated by DDX31 in pancreatic cancer cells.Conclusion: Thus, our work uncovered that DDX31 promotes migration and proliferation in PDAC and might be a promising therapeutic target in pancreatic cancer.

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1101 ◽  
Author(s):  
Asfar S. Azmi ◽  
Yiwei Li ◽  
Amro Aboukameel ◽  
Irfana Muqbil ◽  
Philip A. Philip ◽  
...  

Pancreatic ductal adenocarcinoma is one of the most aggressive cancers, with high mortality in the United States. One of the important signal transduction proteins involved in the regulation of pancreatic cancer’s aggressive progression is the nuclear export protein (XPO1). High expression of XPO1 has been found in pancreatic, lung, breast and other cancers and lymphomas with a poor prognosis of patients with tumors and high proliferative activity of cancer cells. Because XPO1 exports multiple tumor suppressor proteins simultaneously from the nucleus, the inhibition of XPO1 may retain multiple tumor suppressors in the nucleus, resulting in the suppression of cell proliferation and the induction of apoptosis in tumors. In this study, we found that the high expression of XPO1 in pancreatic cancer cells could be, in part, due to the methylation of the miR-30 gene, leading to the low expression level of the miR-30 family. By co-transfection of the XPO1 3′-UTR-Luc target vector with miR-30 mimic, we found that XPO1 is a direct target of the miR-30 family. We also observed that the enforced expression of the miR-30 family inhibited the expression of XPO1, resulting in the suppression of pancreatic cancer growth both in vitro and in vivo. These findings could help to design a novel therapeutic strategy for the treatment of pancreatic cancer by introducing miR-30 into cancer cells.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 216-216
Author(s):  
J. G. Trevino ◽  
S. R. Pillai ◽  
S. P. Chellappan

216 Background: The signaling pathways contributing to DNA-binding protein inhibitor Id1 expression and chemoresistance in pancreatic cancer remain unknown. Id1 plays a role in pancreatic tumor progression with tumor-promoting effects of nicotine regulating protein tyrosine kinase Src activation and Id1 expression, both associated with chemoresistance in other systems. We hypothesize Id1 expression regulates chemoresistance in pancreatic cancer through a nicotine-promoting Src-dependent pathway. Methods: We probed pancreatic cancer cell lines (L3.6pl, PANC-1, Mia-PaCa-2) for innate gemcitabine chemoresistance with cell viability MTT assay and western blot analysis of PARP cleavage programmed cell death. Gemcitabine-sensitive cells were exposed to rising gemcitabine concentrations to establish a resistant subtype, L3.6plGemRes. Protein analysis and mRNA expression were determined by western blot analysis and RT-PCR respectively. Induction of Src phosphorylation or Id1 expression was performed with nicotine (1 μM). Results: Inhibition of c-Src expression was performed with short-interfering RNA (siRNA). Nicotine-induced Src phosphorylation and Id1 expression. Inhibition of Src by siRNA resulted in decreased nicotine-induced Id1 expression. Inhibition of Src and Id1 expression by siRNA in innate or established gemcitabine resistant pancreatic cancer cells resulted in gemcitabine sensitization. To determine if nicotine contributes to gemcitabine chemoresistance, we exposed gemcitabine-sensitive cells to nicotine with subsequent exposure to gemcitabine IC50, 250 ng/ml, and cell viability assays confirmed a 2-fold increase in cell prolilferation and a 4.5-fold reduction in apoptosis. Further, nicotine induced phosphorylation of key signaling enzymes involved in proliferation and apoptosis, Erk1/2 and Akt respectively. Conclusions: In summary, we demonstrate that Id1, through a nicotine-promoting Src-dependent pathway, is necessary for establishment of a chemoresistant phenotype in pancreatic cancer cells. Understanding the signaling pathways involved in pancreatic tumor chemoresistance will lead to therapies resulting in improved tumor responses. No significant financial relationships to disclose.


Author(s):  
Amit Khanna ◽  
Kulandaivelu Mahalingam ◽  
Debarshi Chakrabarti ◽  
Giridharan Periyasamy

AbstractGemcitabine, a novel pyrimidine nucleoside analog, has become the standard chemotherapeutic agent for pancreatic cancer patients. The clinical impact of gemcitabine remains modest owing to the high degree of inherent and acquired resistance. There are various lines of evidence that confirm the role of Ets-1, a proto-oncoprotein, in tumor invasion, progression, and chemoresistance. This study examines a hypothesis that implicates Ets-1 in the development of gemcitabine-resistance in pancreatic cancer cells. Ets-1 protein expression was assessed in parental pancreatic cancer cells and their gemcitabine-resistant clones. Western blot analysis revealed elevated levels of Ets-1 protein expression in gemcitabine-resistant PANC1GemRes (4.8-fold increase; P < 0.05), MIA PaCa2GemRes (3.2-fold increase; P < 0.05), and Capan2GemRes (2.1-fold increase; P < 0.05) cells as compared to their parental counterparts. A time course analysis was conducted to determine the change in Ets-1 expression in the parental cells after incubation with gemcitabine. Reverse transcriptase quantitative real-time PCR (RT-qPCR) and Western blot analysis revealed a significant increase in Ets-1 expression. All the three parental cells incubated with gemcitabine showed elevated Ets-1 protein expression at 6 h. By 24 h, the expression level had decreased. Using small interfering RNA (siRNA) against Ets-1 in gemcitabine-resistant cells, we demonstrated a reversal in gemcitabine chemosensitivity and also detected a marked reduction in the expression of the Ets-1 target genes MMP1 and uPA. Our novel finding demonstrates the significance of Ets-1 in the development of gemcitabine chemoresistance in pancreatic cancer cells. Based on these results, a new siRNA-based therapeutic strategy targeting the Ets-1 genes can be designed to overcome chemoresistance.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Kosuke Ogawa ◽  
Qiushi Lin ◽  
Le Li ◽  
Xuewei Bai ◽  
Xuesong Chen ◽  
...  

Abstract Background Signaling pathways critical for embryonic development re-emerge in adult pancreas during tumorigenesis. Aspartate β-hydroxylase (ASPH) drives embryonic cell motility/invasion in pancreatic development/differentiation. We explored if dysregulated ASPH is critically involved in pancreatic cancer pathogenesis. Methods To demonstrate if/how ASPH mediates malignant phenotypes, proliferation, migration, 2-D/3-D invasion, pancreatosphere formation, immunofluorescence, Western blot, co-immunoprecipitation, invadopodia formation/maturation/function, qRT-PCR, immunohistochemistry (IHC), and self-developed in vitro metastasis assays were performed. Patient-derived xenograft (PDX) models of human pancreatic ductal adenocarcinoma (PDAC) were established to illustrate in vivo antitumor effects of the third-generation small molecule inhibitor specifically against ASPH’s β-hydroxylase activity. Prognostic values of ASPH network components were evaluated with Kaplan-Meier plots, log-rank tests, and Cox proportional hazards regression models. Results ASPH renders pancreatic cancer cells more aggressive phenotypes characterized by epithelial–mesenchymal transition (EMT), 2-D/3-D invasion, invadopodia formation/function as demonstrated by extracellular matrix (ECM) degradation, stemness (cancer stem cell marker upregulation and pancreatosphere formation), transendothelial migration (mimicking intravasation/extravasation), and sphere formation (mimicking metastatic colonization/outgrowth at distant sites). Mechanistically, ASPH activates SRC cascade through direct physical interaction with ADAM12/ADAM15 independent of FAK. The ASPH-SRC axis enables invadopodia construction and initiates MMP-mediated ECM degradation/remodeling as executors for invasiveness. Pharmacologic inhibition of invadopodia attenuates in vitro metastasis. ASPH fosters primary tumor development and pulmonary metastasis in PDX models of PDAC, which is blocked by a leading compound specifically against ASPH enzymatic activity. ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stages of PDAC. Expression profiling of ASPH-SRC network components independently/jointly predicts clinical outcome of PDAC patients. Compared to a negative-low level, a moderate-very high level of ASPH, ADAM12, activated SRC, and MMPs correlated with curtailed overall survival (OS) of pancreatic cancer patients (log-rank test, ps < 0.001). The more unfavorable molecules patients carry, the more deleterious prognosis is destinated. Patients with 0–2 (n = 4), 3–5 (n = 8), 6–8 (n = 24), and 9–12 (n = 73) unfavorable expression scores of the 5 molecules had median survival time of 55.4, 15.9, 9.7, and 5.0 months, respectively (p < 0.001). Conclusion Targeting the ASPH-SRC axis, which is essential for propagating multi-step PDAC metastasis, may specifically/substantially retard development/progression and thus improve prognosis of PDAC.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15727-e15727
Author(s):  
Sunanda Singh ◽  
Genoveva Murillo ◽  
Avani Singh ◽  
Samara Singh ◽  
Meenakshi S Parihar ◽  
...  

e15727 Background: Over 90% of pancreatic cancers have KRAS mutations and hyper-expression of P-STAT3 oncoproteins, which if specifically targeted may help treatment of pancreatic cancers. Singh Biotechnology’s proprietary technology engineered SBT-100, a single domain antibody that is bispecific for KRAS & STAT3, which can cross the cell membranes and bind to these intracellular oncoproteins. Combining this targeted therapy with an established chemotherapy, such as gemcitabine, may improve patient’s response to treatment. Methods: Human pancreatic cancer cells (PANC-1 and BX-PC3) were used. Biacore assay demonstrates SBT-100 binding to KRAS, KRAS (G12D), and STAT3. Immunoprecipitation (IP) and western blot analysis confirmed binding to STAT3 by SBT-100. Pancreatic cancer cells were treated at varying doses of SBT-100 ranging from 0µg/ml to 200µg/ml ± gemcitabine, and after 72 hours growth inhibition was determined by a MTT assay. PANC-1 tumors were grown in athymic nude mice, divided into four groups and staged to a range of 100-150mm3 before treatment. Groups were: vehicle only, SBT-100, gemcitabine, and SBT-100 & gemcitabine. Animals received treatments for 14 days, then monitored for 7 days. Results: Biacore study shows SBT-100 binds KRAS with an affinity of 10-9M, KRAS (G12D) with 10-8M, and STAT3 with 10-8M. IP and western blot analysis demonstrates that SBT-100 binds P-STAT3. MTT assay demonstrates SBT-100 inhibits the growth of PANC-1 and BX-PC3 (p < 0.001). In PANC1 cells a combination of SBT-100 & gemcitabine demonstrates synergism in inhibiting growth of PANC-1, even at 1/8th the gemcitabine IC50 concentration. PANC-1 xenograft study demonstrates that combination therapy of SBT-100 & gemcitabine is superior to either SBT-100 or gemcitabine alone. Compared to the vehicle group, SBT-100 & gemcitabine is far superior (p < 0.001) and gives statistically significant suppression of pancreatic cancer growth in vivo. Conclusions: Targeted therapy for KRAS and P-STAT3 expressing tumors with SBT-100 & gemcitabine is synergistic for the treatment of pancreatic cancer. This study suggests that synergism maybe achieved with lower doses of gemcitabine, thereby reducing toxicity in patients.


Author(s):  
Yosuke Mitsui ◽  
Nahoko Tomonobu ◽  
Masami Watanabe ◽  
Rie Kinoshita ◽  
I Wayan Sumardika ◽  
...  

S100A11, a member of the S100 family of proteins, is actively secreted from pancreatic ductal adenocarcinoma (PDAC) cells. However, the role of the extracellular S100A11 in PDAC progression remains unclear. In the present study, we investigated the extracellular role of S100A11 in crosstalking between PDAC cells and surrounding fibroblasts in PDAC progression. An abundant S100A11 secreted from pancreatic cancer cells stimulated neighboring fibroblasts through receptor for advanced glycation end products (RAGE) upon S100A11 binding and was followed by not only an enhanced cancer cell motility in vitro but also an increased number of the PDAC-derived circulating tumor cells (CTCs) in vivo. Mechanistic investigation of RAGE downstream in fibroblasts revealed a novel contribution of a mitogen-activated protein kinase kinase kinase (MAPKKK), tumor progression locus 2 (TPL2), which is required for positive regulation of PDAC cell motility through induction of cyclooxygenase 2 (COX2) and its catalyzed production of prostaglandin E2 (PGE2), a strong chemoattractive fatty acid. The extracellularly released PGE2 from fibroblasts was required for the rise in cellular migration as well as infiltration of their adjacent PDAC cells in a coculture setting. Taken together, our data reveal a novel role of the secretory S100A11 in PDAC disseminative progression through activation of surrounding fibroblasts triggered by the S100A11‐RAGE‐TPL2‐COX2 pathway. The findings of this study will contribute to the establishment of a novel therapeutic antidote to PDACs that are difficult to treat by regulating cancer-associated fibroblasts (CAFs) through targeting the identified pathway.


Sign in / Sign up

Export Citation Format

Share Document