scholarly journals DNA-Methylation-Caused Downregulation of miR-30 Contributes to the High Expression of XPO1 and the Aggressive Growth of Tumors in Pancreatic Ductal Adenocarcinoma

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1101 ◽  
Author(s):  
Asfar S. Azmi ◽  
Yiwei Li ◽  
Amro Aboukameel ◽  
Irfana Muqbil ◽  
Philip A. Philip ◽  
...  

Pancreatic ductal adenocarcinoma is one of the most aggressive cancers, with high mortality in the United States. One of the important signal transduction proteins involved in the regulation of pancreatic cancer’s aggressive progression is the nuclear export protein (XPO1). High expression of XPO1 has been found in pancreatic, lung, breast and other cancers and lymphomas with a poor prognosis of patients with tumors and high proliferative activity of cancer cells. Because XPO1 exports multiple tumor suppressor proteins simultaneously from the nucleus, the inhibition of XPO1 may retain multiple tumor suppressors in the nucleus, resulting in the suppression of cell proliferation and the induction of apoptosis in tumors. In this study, we found that the high expression of XPO1 in pancreatic cancer cells could be, in part, due to the methylation of the miR-30 gene, leading to the low expression level of the miR-30 family. By co-transfection of the XPO1 3′-UTR-Luc target vector with miR-30 mimic, we found that XPO1 is a direct target of the miR-30 family. We also observed that the enforced expression of the miR-30 family inhibited the expression of XPO1, resulting in the suppression of pancreatic cancer growth both in vitro and in vivo. These findings could help to design a novel therapeutic strategy for the treatment of pancreatic cancer by introducing miR-30 into cancer cells.

2021 ◽  
Author(s):  
Yang Liu ◽  
Yongjie Xie ◽  
Jinsheng Ding ◽  
Liangliang Wu

Abstract Purpose: Pancreatic cancer is one of the most malignant cancers with rapid disease progression. Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% in exocrine pancreatic cancer. DDX31 is one of the Asp-Glu-Ala-Asp (DEAD)-box RNA helicases (DDX) family member, which has never been reported in pancreatic ductal adenocarcinoma. Through comprehensive analysis of bioinformatics screening, clinical pathological data and experiment results verification, we found DDX31 may be a promising oncogene.Patients and methods: The potential correlation between DDX3 expression and clinical feature of PDAC was analyzed, which revealed that patients with high DDX31 expression may have a poor prognosis. Elevated expression levels of DDX31 in PDAC compared with adjacent normal tissues were determined by immunohistochemical and Western blot analyses. Western blot analysis of N-cadherin, Snail, transwell, and wound healing assays was carried out to evaluate the pro-metastasis effects of DDX31 in PDAC. In vitro experiments included colony formation assay. Edu labeling assay, CCK-8, western blot analysis of Ki67, PCNA, and an in vivo subcutaneous mouse model were used to analyze the role of DDX31 in PDAC proliferation.Results: In our research, integrated bioinformatics analysis of the TCGA and GEO databases was performed to identify the metastasis and proliferation-related differentially expressed genes (DEG). DDX31 predicts strong metastasis and proliferation capacity of PDAC, was finally screened. Then, the clinical data identified that highexpression-DDX31 was correlated with pancreatic tumor size, pathological grade, and lymph node metastasis. The in vitro and vivo experiments revealed that overexpression-DDX31 promoted the migration, proliferation and cell viability of pancreatic cancer cells, these functions of DDX31 had also been proved in the knockdown results. Moreover, the EMT related markers and proliferation markers were identified to be positively regulated by DDX31 in pancreatic cancer cells.Conclusion: Thus, our work uncovered that DDX31 promotes migration and proliferation in PDAC and might be a promising therapeutic target in pancreatic cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Chen ◽  
Cui-Cui Zhao ◽  
Fei-Ran Chen ◽  
Guo-Wei Feng ◽  
Fei Luo ◽  
...  

Background. Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods. We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results. We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed ( P < 0.05 ) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) ( P < 0.05 , respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control ( P < 0.05 , respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion. In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Kosuke Ogawa ◽  
Qiushi Lin ◽  
Le Li ◽  
Xuewei Bai ◽  
Xuesong Chen ◽  
...  

Abstract Background Signaling pathways critical for embryonic development re-emerge in adult pancreas during tumorigenesis. Aspartate β-hydroxylase (ASPH) drives embryonic cell motility/invasion in pancreatic development/differentiation. We explored if dysregulated ASPH is critically involved in pancreatic cancer pathogenesis. Methods To demonstrate if/how ASPH mediates malignant phenotypes, proliferation, migration, 2-D/3-D invasion, pancreatosphere formation, immunofluorescence, Western blot, co-immunoprecipitation, invadopodia formation/maturation/function, qRT-PCR, immunohistochemistry (IHC), and self-developed in vitro metastasis assays were performed. Patient-derived xenograft (PDX) models of human pancreatic ductal adenocarcinoma (PDAC) were established to illustrate in vivo antitumor effects of the third-generation small molecule inhibitor specifically against ASPH’s β-hydroxylase activity. Prognostic values of ASPH network components were evaluated with Kaplan-Meier plots, log-rank tests, and Cox proportional hazards regression models. Results ASPH renders pancreatic cancer cells more aggressive phenotypes characterized by epithelial–mesenchymal transition (EMT), 2-D/3-D invasion, invadopodia formation/function as demonstrated by extracellular matrix (ECM) degradation, stemness (cancer stem cell marker upregulation and pancreatosphere formation), transendothelial migration (mimicking intravasation/extravasation), and sphere formation (mimicking metastatic colonization/outgrowth at distant sites). Mechanistically, ASPH activates SRC cascade through direct physical interaction with ADAM12/ADAM15 independent of FAK. The ASPH-SRC axis enables invadopodia construction and initiates MMP-mediated ECM degradation/remodeling as executors for invasiveness. Pharmacologic inhibition of invadopodia attenuates in vitro metastasis. ASPH fosters primary tumor development and pulmonary metastasis in PDX models of PDAC, which is blocked by a leading compound specifically against ASPH enzymatic activity. ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stages of PDAC. Expression profiling of ASPH-SRC network components independently/jointly predicts clinical outcome of PDAC patients. Compared to a negative-low level, a moderate-very high level of ASPH, ADAM12, activated SRC, and MMPs correlated with curtailed overall survival (OS) of pancreatic cancer patients (log-rank test, ps < 0.001). The more unfavorable molecules patients carry, the more deleterious prognosis is destinated. Patients with 0–2 (n = 4), 3–5 (n = 8), 6–8 (n = 24), and 9–12 (n = 73) unfavorable expression scores of the 5 molecules had median survival time of 55.4, 15.9, 9.7, and 5.0 months, respectively (p < 0.001). Conclusion Targeting the ASPH-SRC axis, which is essential for propagating multi-step PDAC metastasis, may specifically/substantially retard development/progression and thus improve prognosis of PDAC.


Author(s):  
Yosuke Mitsui ◽  
Nahoko Tomonobu ◽  
Masami Watanabe ◽  
Rie Kinoshita ◽  
I Wayan Sumardika ◽  
...  

S100A11, a member of the S100 family of proteins, is actively secreted from pancreatic ductal adenocarcinoma (PDAC) cells. However, the role of the extracellular S100A11 in PDAC progression remains unclear. In the present study, we investigated the extracellular role of S100A11 in crosstalking between PDAC cells and surrounding fibroblasts in PDAC progression. An abundant S100A11 secreted from pancreatic cancer cells stimulated neighboring fibroblasts through receptor for advanced glycation end products (RAGE) upon S100A11 binding and was followed by not only an enhanced cancer cell motility in vitro but also an increased number of the PDAC-derived circulating tumor cells (CTCs) in vivo. Mechanistic investigation of RAGE downstream in fibroblasts revealed a novel contribution of a mitogen-activated protein kinase kinase kinase (MAPKKK), tumor progression locus 2 (TPL2), which is required for positive regulation of PDAC cell motility through induction of cyclooxygenase 2 (COX2) and its catalyzed production of prostaglandin E2 (PGE2), a strong chemoattractive fatty acid. The extracellularly released PGE2 from fibroblasts was required for the rise in cellular migration as well as infiltration of their adjacent PDAC cells in a coculture setting. Taken together, our data reveal a novel role of the secretory S100A11 in PDAC disseminative progression through activation of surrounding fibroblasts triggered by the S100A11‐RAGE‐TPL2‐COX2 pathway. The findings of this study will contribute to the establishment of a novel therapeutic antidote to PDACs that are difficult to treat by regulating cancer-associated fibroblasts (CAFs) through targeting the identified pathway.


2005 ◽  
Vol 53 (7) ◽  
pp. 885-893 ◽  
Author(s):  
Junsheng Li ◽  
Jörg Kleeff ◽  
Irene Esposito ◽  
Hany Kayed ◽  
Klaus Felix ◽  
...  

PMP22 is a structural protein of Schwann cells, but it also influences cell proliferation. In the present study, quantitative RT-PCR (QRT-PCR) and immunohistochemistry were used to determine PMP22 mRNA levels and to localize PMP22 in the normal pancreas ( n=20), chronic pancreatitis (CP) ( n=22), pancreatic ductal adenocarcinoma (PDAC) ( n=31), intraductal papillary mucinous neoplasms (IPMN) ( n=9), mucinous cystic tumors (MCN) ( n=4), and in a panel of PanIN lesions ( n=29). PMP22 mRNA levels were significantly higher in CP (3-fold) and PDAC (2.5-fold), compared to normal pancreatic tissues. PMP22 expression was restricted to nerves in the normal pancreas, while in CP and PDAC PMP22 was also expressed in PanIN lesions and in a small percentage of pancreatic cancer cells. PMP22 was weak to absent in the tumor cells of IPMNs and MCNs. PMP22 mRNA was present at different levels in cultured pancreatic cancer cells and up-regulated by transforming growth factor (TGF)-β1 in 2 of 8 of these cell lines. In conclusion, PMP22 expression is present in both CP and PDAC tissues. Its expression in PanIN lesions and some pancreatic cancer cells in vitro and in vivo suggests a role of PMP22 in the neoplastic transformation process from the normal pancreas to pre-malignant lesions to pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document