scholarly journals CD36 Promotes Vasculogenic Mimicry in Melanoma by Mediating Adhesion to the Extracellular Matrix

Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background: The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods: Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results: Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions: Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-a3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


2020 ◽  
Author(s):  
Atikul Islam ◽  
Pei-Fang Hsieh ◽  
Jou-Chun Chou ◽  
Jiunn-Wang Liao ◽  
Ming-Kun Hsieh ◽  
...  

Abstract Background: Although considered a rare form of skin cancer, malignant melanoma has steadily increased internationally and is a main cause of cancer-associated death worldwide. The treatment options for malignant melanoma are very limited. Accumulating data suggest that the natural compound, capsaicin, exhibits preferential anticancer properties to act as a nutraceutical agent. Here, we explored the underlying molecular events involved in the inhibitory effects of capsaicin on the growth of melanoma cells.Methods: The cellular thermal shift assay (CETSA) and isothermal dose response fingerprint (ITDRFCETSA) were utilized to validate the binding of capsaicin with the tumor-associated NADH oxidase, tNOX (ENOX2) in melanoma cells. We also assessed the cellular impact of capsaicin-targeting of tNOX on A375 cells by flow cytometry and protein analysis. The essential role of tNOX in tumor- and melanoma-growth limiting abilities of capsaicin was evaluated in C57BL/6 mice.Results: Our data show that capsaicin directly targets cellular tNOX to inhibit its enzymatic activity and enhance protein degradation capacity. The inhibition of tNOX by capsaicin is accompanied by the attenuation of SIRT1, a NAD+-dependent deacetylase that enhances ULK1 acetylation to induce ROS-dependent autophagy in melanoma cells. Capsaicin treatment of mice implanted with melanoma cancer cells suppressed tumor growth by down-regulating tNOX and SIRT1, which was also seen in an in vivo xenograft study with tNOX-depleted melanoma cells. Conclusions: Together, our findings suggest that tNOX expression is important for the growth of melanoma cancer cells both in vitro and in vivo, and that inhibition of the tNOX-SIRT1 axis contributes to inducting cytotoxic ROS-dependent autophagy in melanoma cells.


Author(s):  
Elena Andreucci ◽  
Anna Laurenzana ◽  
Silvia Peppicelli ◽  
Alessio Biagioni ◽  
Francesca Margheri ◽  
...  

Malignant melanoma is a highly aggressive skin cancer characterized by an elevated grade of tumor cell plasticity. Such plasticity allows melanoma cells adaptation to different hostile conditions and guarantees tumor survival and disease progression, including aggressive features such as drug resistance. Indeed, almost 50% of melanoma rapidly develop resistance to the BRAFV600E inhibitor vemurafenib, with fast tumor dissemination, a devastating consequence for patients' outcomes. Vasculogenic mimicry (VM), the ability of cancer cells to organize themselves in perfused vascular-like channels, might sustain tumor spread by providing vemurafenib-resistant cancer cells with supplementary ways to enter into circulation and disseminate. Thus, this research aims to determine if vemurafenib resistance goes with the acquisition of VM ability by aggressive melanoma cells, and identify a driving molecule for both vemurafenib resistance and VM. We used two independent experimental models of drug-resistant melanoma cells, the first one represented by a chronic adaptation of melanoma cells to extracellular acidosis, known to drive a particularly aggressive and vemurafenib-resistant phenotype, the second one generated with chronic vemurafenib exposure. By performing in vitro tube formation assay and evaluating the expression levels of the VM markers EphA2 and VE-cadherin by western blotting and flow cytometer analyses, we demonstrated that vemurafenib-resistant cells obtained by both models are characterized by an increased ability to perform VM. Moreover, by exploiting the CRISPR-Cas9 technique and using the urokinase plasminogen activator receptor (uPAR) inhibitor M25, we identified uPAR as a driver of VM expressed by vemurafenib-resistant melanoma cells. Thus, uPAR targeting may be successfully leveraged as a new complementary therapy to inhibit VM in drug-resistant melanoma patients, to counteract the rapid progression and dissemination of the disease.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3048-3048
Author(s):  
Yusuke Mizukami ◽  
Junpei Sasajima ◽  
Kazumasa Nakamura ◽  
Kazuya Sato ◽  
Yoshiaki Sugiyama ◽  
...  

Abstract Abstract 3048 Poster Board II-1024 The hedgehog (Hh) pathway has been implicated in the development of embryonic blood vessels and pathogenesis of cancer. Smoothened (Smo), one of the receptors in Hh signaling, is a promising molecular target for the treatment of malignancies. Pancreatic ductal adenocarcinoma (PDAC) is one of the tumors in which sonic hedgehog (Shh) is misexpressed. Although there are cell-autonomous effects of Hh on the proliferation of tumor cells, recent studies have demonstrated an oncogenic function of Hh in stromal cells. Cyclopamine antagonizes Smo and can attenuate PDAC growth in mice, resulting in regression of the tumor vasculature with reduced pericyte coverage. However, the inhibitory effect of cyclopamine on proliferation of KP-1N cells, a human PDAC line highly expressing Shh, was modest, indicating additional effects of Hh signaling on tumor progression. Here, we have identified novel molecular mechanisms by which Hh regulates tumor angiogenesis. Expression of Gli2 protein in the stroma, but not in cancer cells, was attenuated markedly by cyclopamine administration, consistent with the general absence of autocrine Hh signaling in PDAC cells. Cyclopamine significantly attenuated the homing of bone marrow (BM)-derived cells into KP-1N xenografts and their interaction with the tumor vasculature, suggesting that Hh signaling may play a role during migration and differentiation of BM-derived progenitors to participate in neovascularization. Host derived Ang-1 and IGF-1 mRNA levels in xenografts were strongly downregulated by cyclopamine, which may contribute to the maintenance and maturation of tumor vasculature. In vitro co-culture experiments demonstrated that KP-1N cells induced Ang-1/IGF-1 production in BM-progenitors (c-Kit+ fraction of BM mononuclear cell), and this induction was significantly attenuated either by cyclopamine or lentiviral shRNA targeting Smo. In addition, in vitro tube formation assay with the mouse endothelial line MS-1 and a matrigel plug assay supports the role of Shh secreted from PDAC cells to induce migration and capillary formation of BM-derived progenitors. IGF-1 is a crucial target of Hh signaling in BM-derived cells during neovascularization, since anti-IGF-1 neutralizing antibody blocked the induction of the capillary morphogenesis by BM-progenitors. Finally, this “paracrine” effect of Hh seems to be a late event during pancreatic tumorigenesis, as stromal Patch1/Gli2 expression was detected within PDAC lesions in Pdx1-Cre;LSL-KrasG12D;p53lox/+ mice, but not in PanIN lesion, a potential precursor of PDAC, in Pdx1-Cre;LSL-KrasG12D mice. We also observed upregulation of VE-cadherin and Ptch1 mRNA in lineage–/c-Kit+ fraction of BM mononuclear cells (primitive BM-derived progenitors) from PDAC mice as compared to wild-type/PanIN mice, suggesting that pro-angiogenic conditions are prepared at the level of the BM in cancer-bearing hosts. The primitive progenitors derived from ‘activated BM’ are imported to the tumor microenvironment where they become fully activated. Hh-ligand from cancer cells can therefore have a profound effect on neovascularization through the regulation of the progenitors during late stages of tumorigenesis. This work was supported by New Energy and Industrial Technology Development Organization (NEDO) of Japan. Disclosures No relevant conflicts of interest to declare.


2013 ◽  
Vol 28 (6) ◽  
pp. 833 ◽  
Author(s):  
Bi-wen Lin ◽  
Ze-long Jiao ◽  
Jian-feng Fan ◽  
Liang Peng ◽  
Lei Li ◽  
...  

1999 ◽  
Vol 155 (3) ◽  
pp. 739-752 ◽  
Author(s):  
Andrew J. Maniotis ◽  
Robert Folberg ◽  
Angela Hess ◽  
Elisabeth A. Seftor ◽  
Lynn M.G. Gardner ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1016-A1016
Author(s):  
Pranay Arora ◽  
Reetobrata Basu ◽  
John Joseph Kopchick

Abstract Melanoma, an extremely drug resistant form of cancer, displays elevated levels of growth hormone (GH) and growth hormone receptor (GHR) expression. We have described a GH dependent mechanism of chemoresistance in melanoma through a series of earlier studies. In GHR overexpressing human melanoma, GH action drives active drug efflux and phenotype switching by upregulating ATP-binding cassette transporters (ABC-transporters) and epithelial-to-mesenchymal transition (EMT) markers. Inhibition of GHR activation reverses these effects, increases drug retention, and sensitizes the melanoma cells to chemotherapy. GH action in melanoma also appears to drive drug sequestration in melanosomes as we present here. GH action was found to modulate the levels of melanocyte-inducing transcription factor (MITF), the master regulator of melanosome synthesis and melanoma. Additionally, MITF target gene levels and drug sequestering ABC transporter expression were also elevated by GH treatment in vitro and in vivo in mouse tumor xenografts. This was corroborated by in silico analyses of tumor databases. Furthermore, we observed a dose dependent increase in tyrosinase activity and melanogenesis in human melanoma cells with GH, in the presence of chemotherapy, which was suppressed by siRNA mediated GHR inhibition. Thus, we describe an array of molecular mechanisms by which GH drives chemoresistance in melanoma. Therefore, GHR inhibition combined with chemotherapy should lead to better tumor clearance and improve overall survival.


2009 ◽  
Vol 69 (3) ◽  
pp. 802-809 ◽  
Author(s):  
Jean-Claude Lissitzky ◽  
Danielle Parriaux ◽  
Elodie Ristorcelli ◽  
Alain Vérine ◽  
Dominique Lombardo ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 117693512110092
Author(s):  
Abicumaran Uthamacumaran ◽  
Narjara Gonzalez Suarez ◽  
Abdoulaye Baniré Diallo ◽  
Borhane Annabi

Background: Vasculogenic mimicry (VM) is an adaptive biological phenomenon wherein cancer cells spontaneously self-organize into 3-dimensional (3D) branching network structures. This emergent behavior is considered central in promoting an invasive, metastatic, and therapy resistance molecular signature to cancer cells. The quantitative analysis of such complex phenotypic systems could require the use of computational approaches including machine learning algorithms originating from complexity science. Procedures: In vitro 3D VM was performed with SKOV3 and ES2 ovarian cancer cells cultured on Matrigel. Diet-derived catechins disruption of VM was monitored at 24 hours with pictures taken with an inverted microscope. Three computational algorithms for complex feature extraction relevant for 3D VM, including 2D wavelet analysis, fractal dimension, and percolation clustering scores were assessed coupled with machine learning classifiers. Results: These algorithms demonstrated the structure-to-function galloyl moiety impact on VM for each of the gallated catechin tested, and shown applicable in quantifying the drug-mediated structural changes in VM processes. Conclusions: Our study provides evidence of how appropriate 3D VM compression and feature extractors coupled with classification/regression methods could be efficient to study in vitro drug-induced perturbation of complex processes. Such approaches could be exploited in the development and characterization of drugs targeting VM.


2021 ◽  
Vol 70 (3) ◽  
Author(s):  
Bernadetta Bilska ◽  
Fiona Schedel ◽  
Anna Piotrowska ◽  
Joanna Stefan ◽  
Michal Zmijewski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document