scholarly journals uPAR controls vasculogenic mimicry ability expressed by drug-resistant melanoma cells

Author(s):  
Elena Andreucci ◽  
Anna Laurenzana ◽  
Silvia Peppicelli ◽  
Alessio Biagioni ◽  
Francesca Margheri ◽  
...  

Malignant melanoma is a highly aggressive skin cancer characterized by an elevated grade of tumor cell plasticity. Such plasticity allows melanoma cells adaptation to different hostile conditions and guarantees tumor survival and disease progression, including aggressive features such as drug resistance. Indeed, almost 50% of melanoma rapidly develop resistance to the BRAFV600E inhibitor vemurafenib, with fast tumor dissemination, a devastating consequence for patients' outcomes. Vasculogenic mimicry (VM), the ability of cancer cells to organize themselves in perfused vascular-like channels, might sustain tumor spread by providing vemurafenib-resistant cancer cells with supplementary ways to enter into circulation and disseminate. Thus, this research aims to determine if vemurafenib resistance goes with the acquisition of VM ability by aggressive melanoma cells, and identify a driving molecule for both vemurafenib resistance and VM. We used two independent experimental models of drug-resistant melanoma cells, the first one represented by a chronic adaptation of melanoma cells to extracellular acidosis, known to drive a particularly aggressive and vemurafenib-resistant phenotype, the second one generated with chronic vemurafenib exposure. By performing in vitro tube formation assay and evaluating the expression levels of the VM markers EphA2 and VE-cadherin by western blotting and flow cytometer analyses, we demonstrated that vemurafenib-resistant cells obtained by both models are characterized by an increased ability to perform VM. Moreover, by exploiting the CRISPR-Cas9 technique and using the urokinase plasminogen activator receptor (uPAR) inhibitor M25, we identified uPAR as a driver of VM expressed by vemurafenib-resistant melanoma cells. Thus, uPAR targeting may be successfully leveraged as a new complementary therapy to inhibit VM in drug-resistant melanoma patients, to counteract the rapid progression and dissemination of the disease.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


Dermatology ◽  
2019 ◽  
Vol 235 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Fuhan Yang ◽  
Mingming Wen ◽  
Dayu Pan ◽  
Xian Lin ◽  
Jing Mo ◽  
...  

Background: Melanoma, an extremely malignant form of cancer, poses a significant health risk. Vasculogenic mimicry (VM), blood vessels formed by tumor cells instead of endothelial cells, is an important factor for the rapid progression of melanoma. Interleukin (IL)-33 is an inflammatory factor commonly found in the tumor microenvironment and plays an important role in the progression of many tumors. IL-33 acts on immune cells and tumor cells through its receptor ST2. This study hypothesized that IL-33 directly affects the progression of melanoma. Objectives: This study was designed to investigate the effect of IL-33 on VM of melanoma and its potential mechanism of action. Methods: The expression of ST2 was evaluated in 66 cases of melanoma collected from human patients, and the differences were analyzed. In vitro experiments were conducted to study the effects of the IL-33/ST2 axis on cell migration and invasion and to elucidate possible mechanisms. Results: ST2 expression is associated with that of matrix metalloproteinase (MMP)-2 and VM in melanoma of patients. IL-33 increases the abilities of proliferation, migration and invasion of melanoma cells and VM tube formation through ST2. IL-33 induces the production of MMP-2/9 via ERK1/2 phosphorylation. Conclusion: IL-33 can directly act on melanoma cells and promote its development.


2021 ◽  
Author(s):  
Carmela Martini ◽  
Mark DeNichilo ◽  
Danielle P. King ◽  
Michaelia P. Cockshell ◽  
Brenton Ebert ◽  
...  

Abstract Background: The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods: Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results: Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions: Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-a3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.


2021 ◽  
Vol 20 ◽  
pp. 117693512110092
Author(s):  
Abicumaran Uthamacumaran ◽  
Narjara Gonzalez Suarez ◽  
Abdoulaye Baniré Diallo ◽  
Borhane Annabi

Background: Vasculogenic mimicry (VM) is an adaptive biological phenomenon wherein cancer cells spontaneously self-organize into 3-dimensional (3D) branching network structures. This emergent behavior is considered central in promoting an invasive, metastatic, and therapy resistance molecular signature to cancer cells. The quantitative analysis of such complex phenotypic systems could require the use of computational approaches including machine learning algorithms originating from complexity science. Procedures: In vitro 3D VM was performed with SKOV3 and ES2 ovarian cancer cells cultured on Matrigel. Diet-derived catechins disruption of VM was monitored at 24 hours with pictures taken with an inverted microscope. Three computational algorithms for complex feature extraction relevant for 3D VM, including 2D wavelet analysis, fractal dimension, and percolation clustering scores were assessed coupled with machine learning classifiers. Results: These algorithms demonstrated the structure-to-function galloyl moiety impact on VM for each of the gallated catechin tested, and shown applicable in quantifying the drug-mediated structural changes in VM processes. Conclusions: Our study provides evidence of how appropriate 3D VM compression and feature extractors coupled with classification/regression methods could be efficient to study in vitro drug-induced perturbation of complex processes. Such approaches could be exploited in the development and characterization of drugs targeting VM.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yaoyue Qi ◽  
Weiwei Qi ◽  
Shihai Liu ◽  
Libin Sun ◽  
Aiping Ding ◽  
...  

Abstract Background The issue of drug resistance in gastric cancer has attracted global attention. TSPAN9, a 4-transmembrane protein that plays an important role in tumor progression and signal transduction, has been found to be closely related to tumor invasion, metastasis, and autophagy. Methods Immunoblotting was used to evaluate TSPAN9 expression in parental and drug-resistant gastric cancer cells. Functional assays, such as the CCK-8 assay, were used to detect the proliferation of gastric cancer cells and the response of TSPAN9 to 5-fluorouracil (5-FU). Western blotting was used to analyze the expression of constituents of the PI3K/AKT/mTOR-mediated autophagy pathway induced by TSPAN9. Coimmunoprecipitation was performed to assess the specific mechanism by which TSPAN9 affects the PI3K pathway. Results We demonstrated that TSPAN9 is overexpressed in 5-FU-resistant cells compared to parental cells. 5-FU-mediated inhibition of cell proliferation can be significantly restored by increasing TSPAN9 expression, and inhibiting this expression in drug-resistant cells can restore the sensitivity of the cells to 5-FU. In addition, TSPAN9 also significantly promoted autophagy in gastric cancer cells in vitro. Further studies indicated that TSPAN9 downregulates the expression of PI3K and proteins associated with PI3K-mediated autophagy. In addition, TSPAN9 interacts with PI3K and inhibits its catalytic activity. Conclusion The current study reveals the important role of TSPAN9 in drug resistance to 5-FU in gastric cancer. It also provides a new target to clinically address drug-resistant gastric cancer and will contribute to the treatment strategy of this disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shashank Kumar ◽  
Kumari Sunita Prajapati ◽  
Mohd Shuaib ◽  
Prem Prakash Kushwaha ◽  
Hardeep Singh Tuli ◽  
...  

In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2–62 µM while in vivo efficacy was studied in the range of 20–500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.


2020 ◽  
Author(s):  
Atikul Islam ◽  
Pei-Fang Hsieh ◽  
Jou-Chun Chou ◽  
Jiunn-Wang Liao ◽  
Ming-Kun Hsieh ◽  
...  

Abstract Background: Although considered a rare form of skin cancer, malignant melanoma has steadily increased internationally and is a main cause of cancer-associated death worldwide. The treatment options for malignant melanoma are very limited. Accumulating data suggest that the natural compound, capsaicin, exhibits preferential anticancer properties to act as a nutraceutical agent. Here, we explored the underlying molecular events involved in the inhibitory effects of capsaicin on the growth of melanoma cells.Methods: The cellular thermal shift assay (CETSA) and isothermal dose response fingerprint (ITDRFCETSA) were utilized to validate the binding of capsaicin with the tumor-associated NADH oxidase, tNOX (ENOX2) in melanoma cells. We also assessed the cellular impact of capsaicin-targeting of tNOX on A375 cells by flow cytometry and protein analysis. The essential role of tNOX in tumor- and melanoma-growth limiting abilities of capsaicin was evaluated in C57BL/6 mice.Results: Our data show that capsaicin directly targets cellular tNOX to inhibit its enzymatic activity and enhance protein degradation capacity. The inhibition of tNOX by capsaicin is accompanied by the attenuation of SIRT1, a NAD+-dependent deacetylase that enhances ULK1 acetylation to induce ROS-dependent autophagy in melanoma cells. Capsaicin treatment of mice implanted with melanoma cancer cells suppressed tumor growth by down-regulating tNOX and SIRT1, which was also seen in an in vivo xenograft study with tNOX-depleted melanoma cells. Conclusions: Together, our findings suggest that tNOX expression is important for the growth of melanoma cancer cells both in vitro and in vivo, and that inhibition of the tNOX-SIRT1 axis contributes to inducting cytotoxic ROS-dependent autophagy in melanoma cells.


Author(s):  
Ivan Mfouo Tynga ◽  
Heidi Abrahamse

Deregulation of cell growth and development lead to cancer, a severe condition that claims millions of lives worldwide. Targeted or selective approaches used during cancer treatment determine the efficacy and outcome of the therapy. In order to enhance specificity and targeting and better treatment options for cancer, novel and alternative modalities are currently under development. Photodynamic therapy has the potential to eradicate cancer and combination therapy would yield even greater outcomes. Nanomedicine-aided cancer therapy shows enhanced specificity for cancer cells and minimal side-effects coupled with effective cancer destruction both in vitro and in vivo. Nanocarriers used in drug-delivery systems are well able to penetrate cancer stem cell niche, simultaneously killing cancer cells and eradicate drug-resistant cancer stem cells, yielding therapeutic efficiency up to 100 fold against drug-resistant cancer in comparison with free drugs. Safety precautions should be considered when using Nano-mediated therapy as the effects of extended exposure to biological environments are still to be determined.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yaqing Zhang ◽  
Hongyun Gan ◽  
Fei Zhao ◽  
Xiaomei Ma ◽  
Xiaofeng Xie ◽  
...  

Background: Drug resistance is a major obstacle in chemotherapy for ovarian cancer, wherein the up regulation of drug-resistant genes plays an important role. The cytoplasmic polyadenylation element binding protein 4 (CPEB4) is an RNA binding protein that controls mRNA cytoplasmic polyadenylation and translation.Methods: The expression of CPEB4 in paclitaxel-resistant ovarian cancer cell lines and recurrent ovarian tumors relative to counterparts was determined by qRT-PCR, Western blotting and immunohistochemistry. The response to paclitaxel treatment was evaluated by cellular viability test and colony formation assay. RNA immunoprecipitation and poly(A) tail test were applied to examine the levels of RNA binding and cytoplasmic polyadenylation.Results: CPEB4 is elevated in paclitaxel-resistant ovarian cancer cells and recurrent ovarian tumors treated with paclitaxel-based chemotherapy. In addition, CPEB4 overexpression promotes paclitaxel resistance in ovarian cancer cells in vitro, and vice versa, CPEB4 knockdown restores paclitaxel sensitivity, indicating that CPEB4 confers paclitaxel resistance in ovarian cancer cells. Mechanistically, CPEB4 binds with the taxol (paclitaxel)-resistance-associated gene-3 (TRAG-3/CSAG2) mRNAs and induces its expression at a translational level. Moreover, CSAG2 expression is upregulated in paclitaxel-resistant ovarian carcinoma and cancer cell lines, and more importantly, siRNA-mediated CSAG2 knockdown overtly attenuates CPEB4-mediated paclitaxel resistance.Conclusion: This study suggests that the drug-resistant protein CSAG2 is translationally induced by CPEB4, which underlies CPEB4-promoted paclitaxel resistance in ovarian cancer in vitro. Thus, interfering CPEB4/CSAG2 axis might be of benefit to overcome paclitaxel-resistant ovarian cancer.


2020 ◽  
Vol 19 ◽  
pp. 153473542091893 ◽  
Author(s):  
Marta Kaleta-Richter ◽  
David Aebisher ◽  
Dagmara Jaworska ◽  
Zenon Czuba ◽  
Grzegorz Cieślar ◽  
...  

The aim of this study was to measure the secretion of interleukin (IL)-8 and -10 during an elicited immune response following sublethal doses of hypericin-mediated photodynamic therapy (HY-PDT) in experimental models of residual colon cancer cells in vitro. Investigations were performed on the cancer cell lines SW480 and SW620. Each cell line was exposed to 3 different concentrations of the photosensitizer HY and various doses of irradiation. The cell metabolic activity using an MTT assay was performed and then the measurement of IL-8 and IL-10 secretion was achieved using the Bio-Plex ProTMAssay. There was a statistically significant amplification of IL-8 secretion during HY-PDT in the SW620 cell line (at 1 J/cm2: P = .01, 5 J/cm2: P = .002, and 10 J/cm2: P = .025) and a statistically significant decrease in IL-8 during HY-PDT in the SW480 cell line (at 1 J/cm2: P = .05, 5 J/cm2: P = .035, and 10 J/cm2: P = .035). No statistically significant differences in IL-10 concentration were found following HY-PDT in the SW480 (at 1 J/cm2: P > .4, 5 J/cm2: P = .1, and 10 J/cm2: P = .075) or in the SW620 cell line (at 1 J/cm2: P > .4, 5 J/cm2: P > .4, and 10 J/cm2: P > .4). HY-PDT can both eliminate and control a primary tumor via cytotoxic effects, and at sublethal doses, it can affect IL release by colon cancer cells. In this experiment, this influence depended on the level of tumor cell metastatic activity.


Sign in / Sign up

Export Citation Format

Share Document