scholarly journals GFI1 tethers the NuRD complex to open and transcriptionally active chromatin in myeloid progenitors

Author(s):  
Anne Helness ◽  
Jennifer Fraszczak ◽  
Charles Joly-Beauparlant ◽  
Halil Bagci ◽  
Christian Trahan ◽  
...  

Abstract GFI1 is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation, in particular the formation of neutrophils. Here we show that GFI1 interacts with the chromodomain helicase CHD4 and other components of the “Nucleosome remodeling and deacetylase” (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites of open chromatin enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes that are regulated by active or bivalent promoters and active enhancers. Our data also show that GFI1 and GFI1/CHD4 complexes occupy promoters of different sets of genes that are either enriched for IRF1 or SPI-1 consensus sites, respectively. During neutrophil differentiation, overall chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 affects the chromatin remodeling activity of the NuRD complex. Moreover, GFI1/CHD4 complexes regulate chromatin openness and histone modifications differentially to enable regulation of target genes affecting the signaling pathways of the immune response or nucleosome organization or cellular metabolic processes.

2021 ◽  
Author(s):  
Tarik Moroy ◽  
Anne Helness ◽  
Jennifer Fraszczak ◽  
Charles Joly-Beauparlant ◽  
Halil Bagci ◽  
...  

GFI1 is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation, in particular the formation of neutrophils. Here we show that GFI1 interacts with the chromodomain helicase CHD4 and other components of the "Nucleosome remodeling and deacetylase" (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites of open chromatin enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes that are regulated by active or bivalent promoters and active enhancers. Our data also show that GFI1 and GFI1/CHD4 complexes occupy promoters of different sets of genes that are either enriched for IRF1 or SPI-1 consensus sites, respectively. During neutrophil differentiation, overall chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 affects the chromatin remodeling activity of the NuRD complex. Moreover, GFI1/CHD4 complexes regulate chromatin openness and histone modifications differentially to enable regulation of target genes affecting the signaling pathways of the immune response or nucleosome organization or cellular metabolic processes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anne Helness ◽  
Jennifer Fraszczak ◽  
Charles Joly-Beauparlant ◽  
Halil Bagci ◽  
Christian Trahan ◽  
...  

AbstractGrowth factor indepdendent 1 (GFI1) is a SNAG-domain, DNA binding transcriptional repressor which controls myeloid differentiation through molecular mechanisms and co-factors that still remain to be clearly identified. Here we show that GFI1 associates with the chromodomain helicase DNA binding protein 4 (CHD4) and other components of the Nucleosome remodeling and deacetylase (NuRD) complex. In granulo-monocytic precursors, GFI1, CHD4 or GFI1/CHD4 complexes occupy sites enriched for histone marks associated with active transcription suggesting that GFI1 recruits the NuRD complex to target genes regulated by active or bivalent promoters and enhancers. GFI1 and GFI1/CHD4 complexes occupy promoters that are either enriched for IRF1 or SPI1 consensus binding sites, respectively. During neutrophil differentiation, chromatin closure and depletion of H3K4me2 occurs at different degrees depending on whether GFI1, CHD4 or both are present, indicating that GFI1 is more efficient in depleting of H3K4me2 and -me1 marks when associated with CHD4. Our data suggest that GFI1/CHD4 complexes regulate histone modifications differentially to enable regulation of target genes affecting immune response, nucleosome organization or cellular metabolic processes and that both the target gene specificity and the activity of GFI1 during myeloid differentiation depends on the presence of chromatin remodeling complexes.


2019 ◽  
Author(s):  
Rodrigo O. de Castro ◽  
Victor Goitea ◽  
Luciana Previato ◽  
Agustin Carbajal ◽  
Courtney T. Griffin ◽  
...  

AbstractTestis development and sustained germ cell production in adults rely on the establishment of spermatogonia stem cells and their proper differentiation into mature gametes. Control of these processes involves not only promoting the expression of genes required for cell survival and differentiation but also repressing other cell fates. This level of transcriptional control requires chromatin-remodeling complexes that restrict or promote transcription machinery. Here, we investigated the roles of the NUcleosome Remodeling and Deacetylase (NURD) complex during spermatogenesis. Our cellular and biochemical analyses revealed differential expression and composition of NURD subunits in gametocytes at different stages of testis development. Germ cell-specific deletion of the NURD catalytic component CHD4, but not CHD3, resulted in arrested early gamete development due to failed cell survival of the undifferentiated spermatogonia stem cell population. Genome-wide CHD4 chromatin localization and transcriptomic analyses revealed that CHD4 binds the promoters and regulates the expression of genes involved in spermatogonia cell survival and differentiation. These results uncover the requirements of CHD4 in mammalian gonad development, and point to unique roles for the NURD complex with respect to other chromatin remodelers during gamete development.Significance StatementGametogenesis is a fundamental developmental program required for sustained fertility and survival of all sexually reproducing species. The developing male gamete undergoes numerous cell divisions and developmental stage transitions that are carefully monitored by epigenetic mechanisms. One prominent mechanism is directed by chromatin remodeling complexes, which modify chromatin structure and thereby control fundamental cellular processes such as gene transcription. In this work, we focused in understanding the role of CHD4 and CHD3 proteins, catalytic subunits of the NURD chromatin-remodeling complex, in mouse gametogenesis. We find that CHD4 has an essential function in gametogenesis, with an absolute requirement for survival of spermatogonia populations in the developing testis. This is accompanied by CHD4-mediated transcriptional regulation of genes important for spermatogonia survival, and differentiation.


2020 ◽  
Vol 21 (3) ◽  
pp. 762 ◽  
Author(s):  
Dominika M. Gratkowska-Zmuda ◽  
Szymon Kubala ◽  
Elzbieta Sarnowska ◽  
Pawel Cwiek ◽  
Paulina Oksinska ◽  
...  

SWI/SNF ATP-dependent chromatin remodeling complexes (CRCs) play important roles in the regulation of transcription, cell cycle, DNA replication, repair, and hormone signaling in eukaryotes. The core of SWI/SNF CRCs composed of a SWI2/SNF2 type ATPase, a SNF5 and two of SWI3 subunits is sufficient for execution of nucleosome remodeling in vitro. The Arabidopsis genome encodes four SWI2/SNF2 ATPases, four SWI3, a single SNF5 and two SWP73 subunits. Genes of the core SWI/SNF components have critical but not fully overlapping roles during plant growth, embryogenesis, and sporophyte development. Here we show that the Arabidopsis swi3c mutant exhibits a phenotypic reversion when grown at lower temperature resulting in partial restoration of its embryo, root development and fertility defects. Our data indicates that the swi3c mutation alters the expression of several genes engaged in low temperature responses. The location of SWI3C-containing SWI/SNF CRCs on the ICE1, MYB15 and CBF1 target genes depends on the temperature conditions, and the swi3c mutation thus also influences the transcription of several cold-responsive (COR) genes. These findings, together with genetic analysis of swi3c/ice1 double mutant and enhanced freezing tolerance of swi3c plants illustrate that SWI/SNF CRCs contribute to fine-tuning of plant growth responses to different temperature regimes.


2021 ◽  
Author(s):  
Mehdi Sharifi Tabar ◽  
Caroline Giardina ◽  
Yue Julie Feng ◽  
Habib Francis ◽  
Hakimeh Moghaddas Sani ◽  
...  

AbstractThe combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1, and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodeling module of the Nucleosome Remodeling and Deacetylase (NuRD) complex, a gene repressor complex. Specific paralogues of the MGCC subunits such as MBD2 and CHD4 are amongst the key repressors of adult-stage fetal globin and provide important targets for molecular therapies in beta (β)-thalassemia. However, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed to date. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential in defining underlying mechanisms and developing treatment strategies. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS) we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodeling activity into both the ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the Nuclear Receptor Co-Repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.


2019 ◽  
Vol 23 (2) ◽  
pp. 180-183
Author(s):  
I. S. Osadchiy ◽  
T. N. Fedorova ◽  
P. G. Georgiev ◽  
O. G. Maksimenko

The proteins with the BTB domain play an important role in the processes of activation and repression of transcription. Interestingly, BTB-containing proteins are widely distributed only among higher eukaryotes. Many BTB-containing proteins are transcriptional factors involved in a wide range of developmental processes. One of the key regulators of early development is the BTB-containing protein Ttk (tramtrack), which is able to interact with the Drosophila nucleosome remodeling and histone deacetylation (dNuRD) complex. Ttk69 directly interacts with two protein components of the dNuRD complex, dMi-2 and MEP1. It can be assumed that Ttk69 represses some target genes by remodeling chromatin structure through the recruitment of the dNuRD complex. However, it is still unknown what provides for specific recruitment of Ttk to chromatin in the process of negative/positive regulation of a target gene expression. Although Ttk69 has DNA-binding activity, no extended specific motif has been identified. The purpose of this study was to find proteins that can participate in the recruitment of Ttk to regulatory elements. To identify Ttk partner proteins, screening in the yeast two-hybrid system was performed against a collection of proteins with clusters of C2H2 domains, which bind effectively and specifically to sites on chromatin. As a results, the CG10321 and CG1792 proteins were identified as potential DNA-binding partners of Ttk. We suppose that the CG10321 and CG1792 proteins provide specificity for the recruitment of Ttk and, as a result, of the NuRD-complex to the genome regulatory elements. We found that the Ttk protein is able to interact with the MEP1 and ZnF proteins at once.


2018 ◽  
Vol 115 (32) ◽  
pp. 8173-8178 ◽  
Author(s):  
Jian Sima ◽  
Zhijiang Yan ◽  
Yaohui Chen ◽  
Elin Lehrmann ◽  
Yongqing Zhang ◽  
...  

Ectodysplasin A (Eda) signaling activates NF-κB during skin appendage formation, but how Eda controls specific gene transcription remains unclear. Here, we find that Eda triggers the formation of an NF-κB–associated SWI/SNF (BAF) complex in which p50/RelB recruits a linker protein, Tfg, that interacts with BAF45d in the BAF complex. We further reveal that Tfg is initially induced by Eda-mediated RelB activation and then bridges RelB and BAF for subsequent gene regulation. The BAF component BAF250a is particularly up-regulated in skin appendages, and epidermal knockout of BAF250a impairs skin appendage development, resulting in phenotypes similar to those of Eda-deficient mouse models. Transcription profiling identifies several target genes regulated by Eda, RelB, and BAF. Notably, RelB and the BAF complex are indispensable for transcription of Eda target genes, and both BAF complex and Eda signaling are required to open chromatin of Eda targets. Our studies thus suggest that Eda initiates a signaling cascade and recruits a BAF complex to specific gene loci to facilitate transcription during organogenesis.


2020 ◽  
Author(s):  
Heesun Kim ◽  
Yue-He Ding ◽  
Gangming Zhang ◽  
Yong-Hong Yan ◽  
Darryl Conte ◽  
...  

SUMMARYEukaryotic cells use guided search to coordinately control dispersed genetic elements. The transitive effectors of these mechanisms, Argonaute proteins and their small-RNA co-factors, engage nascent RNAs and chromatin-associated proteins to direct transcriptional silencing. The small ubiquitin-like modifier (SUMO) has been shown to promote the induction and maintenance of silent chromatin (called heterochromatin) in yeast, plants, and animals. Here we show that Argonaute-directed transcriptional silencing in C. elegans requires SUMOylation of the type 1 histone deacetylase HDA-1. SUMOylation of HDA-1 promotes interactions with components of the nucleosome remodeling and deacetylase (NuRD) complex and with the nuclear Argonaute HRDE-1/WAGO-9. Our findings suggest how HDAC1 SUMOylation promotes the association of HDAC and other chromatin remodeling factors with a nuclear Argonaute in order to initiate de novo heterochromatin silencing.


2019 ◽  
Vol 97 (2) ◽  
pp. 118-129 ◽  
Author(s):  
Daniel Schill ◽  
Joshua Nord ◽  
Lisa Ann Cirillo

We have previously shown that cooperative, interdependent binding by the pioneer factors FoxO1 and FoxA1/2 is required for recruitment of RNA polymerase II and H3K27 acetylation to the promoters of insulin-regulated genes. However, the underlying mechanisms are unknown. In this study, we demonstrate that, in HepG2 cells, FoxO1 and FoxA2 form a complex on DNA that is disrupted by insulin treatment. Insulin-mediated phosphorylation of FoxO1 and FoxA2 does not impair their cooperative binding to mononucleosome particles assembled from the IGFBP1 promoter, indicating that direct disruption of complex formation by phosphorylation is not responsible for the loss of interdependent FoxO1:FoxA1/2 binding following insulin treatment. Since FoxO1 and FoxA1/2 binding is required for the establishment and maintenance of transcriptionally active chromatin at insulin-regulated genes, we hypothesized that cooperative FoxO1 and FoxA1/2 binding dictates the chromatin remodeling events required for the initial activation of these genes. In support of this idea, we demonstrate that FoxO1 and FoxA2 cooperatively open linker histone compacted chromatin templates containing the IGFBP1 promoter. Taken together, these results provide a mechanism for how interdependent FoxO1:FoxA1/2 binding is negatively impacted by insulin and provide a developmental context for cooperative gene activation by these factors.


Sign in / Sign up

Export Citation Format

Share Document