scholarly journals Messenger RNAs Mobile in Salix Matsudana Grafts Were in Association With Plant Rooting

Author(s):  
Yin Peng ◽  
Liu Xiao ◽  
Lan Baoliang ◽  
Cui Yu ◽  
Wang Yan ◽  
...  

Abstract Messenger RNAs exchanged between scions and rootstocks of grafted plants seriously affect their traits performance. The study goals were to identify the long-distance mRNA transmission events in grafted willows using a transcriptome analysis and to reveal the possible effects on rooting traits. The results showed that the Salix matsudana variety 9901 has better rooting ability than YJ, which reasonably improved the rooting performance of the heterologous grafts 9901 (scion) / YJ (rootstock). A transcriptome analysis showed that 2,948 differentially expressed genes (DEGs) were present in the rootstock of 9901/YJ grafted plants in comparison with YJ/YJ. Among them, 692 were identified as mRNAs moved from 9901 scion based on a SNP analysis of two parents. They were mostly 1,001–1,500 bp, had 40–45% GC contents, or had expression abundance values less than 10. However, mRNAs over 4,001 bp, having 50–55% GC contents, or having expression abundance values of 10–20 were preferentially transferred. Eight mRNAs subjected to long-distance trafficking were involved in the plant hormone pathways and may significantly promote the root growth of grafted plants. Thus, heterologous grafts of Salix matsudana could efficiently influence plant rooting since of the mRNAs transport from scion to rootstock. Thus, the grafting parents and grafting patterns would be much concerned in the breeding process to gain the expected results in future.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hangxia Jin ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Xujun Fu ◽  
Fengjie Yuan

AbstractPhytic acid (PA) is a major antinutrient that cannot be digested by monogastric animals, but it can decrease the bioavailability of micronutrients (e.g., Zn and Fe). Lowering the PA content of crop seeds will lead to enhanced nutritional traits. Low-PA mutant crop lines carrying more than one mutated gene (lpa) have lower PA contents than mutants with a single lpa mutant gene. However, little is known about the link between PA pathway intermediates and downstream regulatory activities following the mutation of these genes in soybean. Consequently, we performed a comparative transcriptome analysis using an advanced generation recombinant inbred line with low PA levels [2mlpa (mips1/ipk1)] and a sibling line with homozygous non-mutant alleles and normal PA contents [2MWT (MIPS1/IPK1)]. An RNA sequencing analysis of five seed developmental stages revealed 7945 differentially expressed genes (DEGs) between the 2mlpa and 2MWT seeds. Moreover, 3316 DEGs were associated with 128 metabolic and signal transduction pathways and 4980 DEGs were annotated with 345 Gene Ontology terms related to biological processes. Genes associated with PA metabolism, photosynthesis, starch and sucrose metabolism, and defense mechanisms were among the DEGs in 2mlpa. Of these genes, 36 contributed to PA metabolism, including 22 genes possibly mediating the low-PA phenotype of 2mlpa. The expression of most of the genes associated with photosynthesis (81 of 117) was down-regulated in 2mlpa at the late seed developmental stage. In contrast, the expression of three genes involved in sucrose metabolism was up-regulated at the late seed developmental stage, which might explain the high sucrose content of 2mlpa soybeans. Furthermore, 604 genes related to defense mechanisms were differentially expressed between 2mlpa and 2MWT. In this study, we detected a low PA content as well as changes to multiple metabolites in the 2mlpa mutant. These results may help elucidate the regulation of metabolic events in 2mlpa. Many genes involved in PA metabolism may contribute to the substantial decrease in the PA content and the moderate accumulation of InsP3–InsP5 in the 2mlpa mutant. The other regulated genes related to photosynthesis, starch and sucrose metabolism, and defense mechanisms may provide additional insights into the nutritional and agronomic performance of 2mlpa seeds.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1334
Author(s):  
Yuqing Huang ◽  
Shengguan Cai ◽  
Guoping Zhang ◽  
Songlin Ruan

Phosphite (PHI) has been used in the management of Phytophthora diseases since the 1970s.We assessed the effect of PHI on controlling the incidence of Xanthomonas oryzae pv.oryzae and Pyricularia grisea. As a result, PHI application significantly inhibited the incidence of the diseases. To clarify the molecular mechanism underlying this, a transcriptome study was employed. In total, 2064 differentially expressed genes (DEGs) were identified between control and PHI treatment. The key DEGs could be classified into phenylpropanoid biosynthesis (ko00940), starch and sucrose metabolism (ko00500), and plant hormone signal transduction (ko04075). The expressions of defense-related genes had a higher expression lever upon PHI treatment. This study provides new insights into the mechanism of protection effect of PHI against pathogens.


2010 ◽  
Vol 7 (1) ◽  
pp. 169-182 ◽  
Author(s):  
Thierry Beulé ◽  
Céline Camps ◽  
Ségolène Debiesse ◽  
Christine Tranchant ◽  
Stéphane Dussert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document