scholarly journals Circularly Polarized Monopole Multiband Microstrip Patch Antenna for Multi-Band Operations

Author(s):  
Ajay Kumar Meena ◽  
poorv ◽  
Rachit Ravi ◽  
anukul Pandey

Abstract In this communication, an O-shape multi-band coordinated wideband monopole reception apparatus which supports present-day wireless communication is proposed. This proposed O- shaped antenna supports five different bandwidths in the -10db impedance bandwidth range. This antenna was constructed on a FR-4(Fire Retardant fibre glass) epoxy substrate having a dielectric constant (εr) of 4.4 within the dimensions 60x50x1.59.This antenna which at the same time have a circular polarisation radiation pattern, which allows the proposed antenna to function at different frequencies. To increase the number of bands and improve the bandwidth, a reverse replica of the O-shaped concentric ring is introduced in the main design. The proposed antenna is implemented and analysed on Electromagnetic simulation software (HFSS) This replicated antenna provides support to widely used bands such as Bluetooth, WLAN and Ultra-Wideband. An L-shaped split is introduced on the ground to obtain circular polarisation and for matching axial ratio with S11 bands to achieve circular polarisation. Here the H-plane (azimuthal plane) gives an omnidirectional radiation pattern and E-plane (elevation plane) figures patterns. This design has several advantages like low weight and volume, support linear and circular polarisation and capable of multi-band operations.

2019 ◽  
Vol 8 (4) ◽  
pp. 2133-2139

A miniaturized microstrip-fed, wideband and circularly polarized L-shaped slot antenna is designed for ultra-wideband applications. To realize L-shaped slot antenna with wide impedance bandwidth, a stub of size 10.7 mm2 is added to a rectangular shaped slot of the ground plane. The position of the feedline is optimized to attain wide circular polarization bandwidth. The proposed antenna size is very small i.e., 25×25 mm2 . A prototype of the design is fabricated and measured. The axial ratio bandwidth (ARBW< 3 dB) of 2.2 GHz (from 6.2 GHz to 8.4 GHz) and the impedance bandwidth (S11<-10 dB) of 7.4 GHz (from 2.5 GHz to 9.9 GHz) is achieved by the proposed design. Moreover, the antenna achieves a stable radiation pattern and a gain of more than 2.8 dBi over the complete ARBW. The advantages of the structure are miniaturized design, having wide impedance bandwidth, and broad ARBW


This paper presents a novel, compact Ultra Wide Band , Asymmetric Ring Rectangular Dielectric Resonator Antenna (ARRDRA), which is a unique combination of Thin Dielectric Resonator (DR), Fork shape patch and defective ground structure. The base of the proposed antenna is its Hybrid structure, which generates fundamental TM, TE and higher order modes that yields an impedance bandwidth of 119%. Proposed antenna provides a frequency range from 4.2 to 16.6 GHz with a stable radiation pattern and low cross polarization levels. Peak gain of 5.5 dB and average efficiency of 90% is obtained by the design. Antenna is elongated on a FR4 substrate of dimension 20 x 24x 2.168 mm3 and is particularly suitable for C band INSAT, Radio Altimeter, WLAN, Wi-Fi for high frequencies. Ease in fabrication due to simplicity, compactness, stable radiation pattern throughout the entire bandwidth are the key features of the presented design. Inclusion of Defective ground structure and asymmetric ring not only increases the bandwidth but also stabilize the gain and efficiency due to less surface current. Presented design launch an Ultra Wide Band antenna with sufficient band rejection at 4.48-5.34 and 5.64-8.33 GHz with stable radiation pattern and high gain.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Dawood Seyed Javan ◽  
Mohammad Ali Salari ◽  
Omid Hashemi Ghoochani

A novel design of an ultra-wideband (UWB) slot antenna is presented. This antenna operates as a transmitter and receiver antenna. Effects of the antenna dimensional parameters are studied through experimental and simulation results. Design procedures are developed and verified for different frequency bands. The experimental and simulation results exhibit good impedance bandwidth, radiation pattern, and relatively constant gain over the entire band of frequency. Antenna gain and directivity at boresight and in their maximum states are close to each other and indicate high radiation efficiency. To use the antenna as a linearly polarized antenna, the radiation pattern in E-plane is better thanthat inH-plane.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Akrem Asmeida ◽  
Zuhairiah Zainal Abidin ◽  
Shaharil Mohd Shah ◽  
Muhammad Ramlee Kamarudin ◽  
Norun Abdul Malek ◽  
...  

Producing a suitable impedance matching between the radiating element and the feedline is the prior hurdle to overcome for a wideband antenna with circular polarisation designs. This study presents a novel antenna consisting of a defected ground structure (DGS) and a crescent-slot radiating patch for broad impedance bandwidth. In addition, a narrow rectangular slot was etched on the ground plane for antenna compactness and outcomes improvement. In order to examine the reliability, two different numerical softwares were compared based on the antenna’s basic structure. Apart from this, an equivalent circuit of the proposed prototype is modelled logically using ADS 2016. The numerical results demonstrate that the impedance bandwidth was about 74.6% for < −10 dB, while the 3 dB axial ratio bandwidth greater than 53% was achieved. In the operational bandwidth of the design, good impedance matching and high efficiency were seen, which shows that this design is appropriate for modern wireless communication systems in ISM and GSM bands.


2018 ◽  
Vol 11 (4) ◽  
pp. 382-389
Author(s):  
Abhishek Kumar Awasthi ◽  
A. R. Harish

AbstractIn this paper, a compact wideband tightly-coupled dipole antenna array has been developed. Dipole elements are placed in the triangular lattice to reduce the side lobe level in the radiation pattern of one of the planes. To obtain the initial dimensions, 1-D infinite array analysis of the proposed array is carried out. The infinite array is designed to operate in 5–14.3 GHz (96.3% impedance bandwidth) frequency band. The antenna array can be used in C and X band applications. Inter-element coupling is utilized to achieve ultra-wideband performance in the proposed array. A 2 × 8 elements finite array is designed with the feed network. An ultra-wideband parallel strip to microstrip transition is used to feed the array elements. A metallic shielding for the feed network helps in reducing the back lobes. The overall size of the array with the reflector and the feed network is 148 mm × 224 mm × 54.5 mm. To validate the proposed concept, the antenna array is fabricated and tested. Impedance bandwidth of 2.8:1 along with broadside radiation pattern throughout the band of interest is observed.


Author(s):  
B. Hammache ◽  
A. Messai ◽  
I. Messaoudene ◽  
T. A. Denidni

Abstract In this paper, a compact stepped slot antenna for ultra-wideband (UWB) applications is proposed. A very small size and UWB bandwidth operation are achieved by integrating a stepped slot in the back side of the antenna. This stepped slot is excited by using a 50 Ω-feed line in the top side of the antenna. The antenna is characterized by an impedance bandwidth between 3.05 GHz and more than 12 GHz. The dimensions of the antenna are 17 mm × 8 mm × 1.27 mm, which leads to the most compact size compared with other works in the literature. The integrated stepped slot is divided into additional elementary slots, where each elementary slot has a matching point. Adding these elementary slots allows to increase further the operating bandwidth. The radiation pattern of the compact stepped slot antenna is omnidirectional in the H-plane and bidirectional in the E-plane. The measurement results agree well with the simulated ones in terms of impedance matching and radiation pattern.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1174 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Areej Malibari

This article presents a compact, planar, quad-port ultra-wideband (UWB) multiple-input–multiple-output (MIMO) antenna with wide axial ratio bandwidth (ARBW). The proposed MIMO design consists of four identical square-shaped antenna elements, where each element is made up of a circular slotted ground plane and feed by a 50 Ω microstrip line. The circular polarization is achieved using a protruding hexagonal stub from the ground plane. The four elements of the MIMO antenna are placed orthogonally to each other to obtain high inter-element isolation. FR-4 dielectric substrate of size 45 × 45 × 1.6 mm3 is used for the antenna prototype, and a good agreement is noticed among the simulated and experimental results. The proposed MIMO antenna shows 3-dB ARBW of 52% (3.8–6.5 GHz) and impedance bandwidth (S11 ≤ −10 dB) of 144% (2.2–13.5 GHz).


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sorana Niyamanon ◽  
Rewat Senathong ◽  
Chuwong Phongcharoenpanich

This research proposes a dual-frequency circularly polarized truncated square aperture patch antenna with slant stripline and L-shaped slot for WLAN applications. In the antenna design, the parameters were optimized and the WLAN-enabled dual-frequency (2.4 and 5.8 GHz) antenna was realized. Simulations were subsequently carried out for the impedance bandwidth (S11) < −10 dB, axial ratio (AR) ≤ 3 dB, optimal gain, and bidirectional radiation pattern. To validate, an antenna prototype was fabricated and the experiments were undertaken. The simulated and experimental results are in good agreement. In essence, the proposed WLAN-enabled dual-frequency circularly polarized antenna is most suited for applications in the vertically and horizontally elongated areas, including in the tunnel, train carriage, and buildings.


Sign in / Sign up

Export Citation Format

Share Document