scholarly journals A Sector-Based Approach To Hybrid TDMA And NOMA With Digital Beamforming For Fairness Improvement In Wireless Powered Communication Networks

Author(s):  
Deukong Yoon ◽  
Mwamba Kasongo Dahouda ◽  
Juhyun Maeng ◽  
Inwhee Joe

Abstract In recent years, Wireless Powered Communication Network (WPCN) has been a promising technology that can be applied to existing low-power sensor networks and the Internet of Things (IoT). Sensor nodes or IoT devices are usually battery-powered. It is possible to use naturally collectable energy such as solar and wind without using a battery, but this is not a stable supply of energy. Therefore, the idea of operating a sensor network by separately setting a base station that continuously supplies power with radio waves has been presented. ThMris paper proposes an approach for how to combine Non-Orthogonal Multiple Access (NOMA) and Time-Division Multiple Access (TDMA) among various multiple access protocols applicable to wireless powered communication networks. There are some problems using TDMA alone. If a time slot is allocated so that the sum-throughput is maximized, the fairness of nodes is not guaranteed. To cope with these shortcomings, NOMA, which is known as a method to improve fairness, is mixed. Our approach is that cells are divided into sectors so that TDMA is used among sectors while NOMA is used within sectors. In addition, optimization of the sector by sector time allocation for maximum sum-throughput can lead to residual energy in certain sectors. Therefore, a directional digital beamforming adapted to the transmission for each sector is used for efficient energy transmission. Unlike the previous user clustering, we attempt to generalize the number of nodes for NOMA from the fixed two nodes to any nodes by introducing the sector-based system model. The simulation results show that there is a trade-off between the sum-throughput and fairness because the sum-throughput increases but the fairness decreases as the number of sectors increases. As a result, we can suggest that a balanced range lies in between three and six sectors to satisfy both the sum-throughput and fairness at the same time. Finally, it is proven that our hybrid approach improves fairness significantly with the increasing number of nodes, as compared to the original TDMA only.

Author(s):  
Rohini Sharma ◽  
D. K. Lobiyal

A main characteristic of wireless sensor network (WSN) is its limited battery power. Non-uniform energy depletion in WSN, leads to formation of energy holes in certain areas of network. For a uniform consumption of energy among sensor nodes, some points should be considered like the residual energy of the nodes, energy consumed in the communication and route length. In this work, the authors has achieved the uniform consumption of energy by using dissimilar transmission power levels for communication between cluster heads and the sink node, and for intra- cluster communication. Further, they have used ant colony optimization technique for routing between the base station and sensors which are not the member of any cluster. They have proposed dual transmission power levels and ant colony optimization based (DTP-ACO) protocol to improve the lifespan of the network. Results demonstrate that DTP-ACO protocol outperforms LEACH protocol in provisions of the life span, residual energy, packets sent to the base station and throughput of the network.


2021 ◽  
Vol 26 (1) ◽  
pp. 79-85
Author(s):  
Samar Shaker Metwaly ◽  
Ahmed. M. Abd El-Haleem ◽  
Osama El-Ghandour

NB-IoT is the standardized technology for machine type communication (MTC) in Long Term Evolution (LTE). NB-IoT can achieve IoT requirements nevertheless, it suffers a low rate and capacity. On the other hand, Unmanned aerial vehicles (UAV) and Non-Orthogonal Multiple Access (NOMA) are promising technology used to enhance the throughput, capacity, and coverage of wireless communication networks. In this paper, we propose a heterogeneous network scenario where a UAV small Base Station (UBS) is used to assist the LTE Macro Base Station (MBS) with the help of the Non-Orthogonal Multiple Access technique to solve the NB-IoT throughput and capacity issues. Matching game based no-regret learning algorithm is proposed to optimize the NB-IoT device association and using NOMA pairing at each base station to provide the maximum system total rate and capacity. Simulation results show that our proposed scheme increases the total rate of the system by 60% and the system capacity by at least 80%, compared to NOMA without UAV and the total rate and capacity of the system by 200% and 85% respectively, with OMA scheme.


2021 ◽  
Vol 72 (5) ◽  
pp. 343-347
Author(s):  
Aasheesh Shukla

Abstract The propagation medium plays a crucial role in any wireless communication networks, the channel between the transmitter and the receiver, deteriorate the quality of the received signal due to the uncontrollable interactions such as scattering, reflection, and refraction in the channel with the surrounding objects. To overcome this challenge, the recent advent of recongurable intelligent surfaces can be helpful, in which the network operators can control the radio waves, eg, the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. On the other hand, few research papers reported an efficient code domain non orthogonal multiple access (NOMA) such as Interleave division multiple access (IDMA) system for wireless information transfer. Persuaded by the capability of this arising RIS technology, the present article is aimed to provide the modified framework of IDMA (code-domain NOMA) communication system based on RIS technology. Simulation results demonstrate that the proposed system achieves better SNR performance than the conventional IDMA framework.


Author(s):  
Slaheddine Chelbi ◽  
Majed Abdouli ◽  
Mourad Kaddes ◽  
Claude Duvallet ◽  
Rafik Bouaziz

<p>Wireless Sensor Networks (WSN) differ from traditional wireless communication networks in several characteristics. One of these characteristics is power awarness, due to the fact that the batteries of sensor nodes have a restricted lifetime and are difficult to be replaced. Therefore, all protocols must be designed to minimize energy consumption and preserve the longevity of the network. In this paper, we propose (i) to fairly balance the load among nodes. For this, we generate an unequal clusters size where the cluster heads (CH) election is based on energy availability, (ii) to reduce the energy consumption due to the transmission by using multiple metrics in the CH jointure process and taking into account the link cost, residual energy and number of cluster members to construct the routing tree and (iii) to minimize the number of transmissions by avoiding the unnecessary updates using sensitive data controller. Simulation results show that our Advanced Energy-Efficient Unequal Clustering (AEEUC) mechanism improves the fairness energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aaqil Somauroo ◽  
Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Maryam El Azhari ◽  
Nadya El Moussaid ◽  
Ahmed Toumanari ◽  
Rachid Latif

The phenomenal advances in electronics contributed to a widespread use of distributed sensors in wireless communications. A set of biosensors can be deployed or implanted in the human body to form a Wireless Body Area Network (WBAN), where various WBAN PHY layers are utilized. The WBAN allows the measurement of physiological data, which is forwarded by the gateway to the base station for analysis purposes. The main issue in conceiving a WBAN communication mechanism is to manage the residual energy of sensors. The mobile agent system has been widely applied for surveillance applications in Wireless Sensor Networks (WSNs). It consists in dispatching one or more mobile agents simultaneously to collect data, while following a predetermined optimum itinerary. The continuous use of the optimal itinerary leads to a rapid depletion of sensor nodes batteries, which minimizes the network lifetime. This paper presents a new algorithm to equalize the energy consumption among sensor motes. The algorithm exploits all the available paths towards the destination and classifies them with respect to the end-to-end delay and the overall energy consumption. The proposed algorithm performs better compared to the optimal routing path. It increases the network lifetime to the maximum by postponing routing of data via the most-recently used path, and it also maintains data delivery within the delay interval threshold.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1709
Author(s):  
Baohui Shi ◽  
Yuexia Zhang

Internet of Things (IoT) is a new concept in the information and communication technology studies which indicates that any creature (human, animal, or object) can send and receive data through communication networks, such as the internet or intranet platform. Wireless sensors have limited energy resources due to the use of batteries to supply energy, and since it is usually not possible to replace the batteries of these sensors. In addition, the lifespan of the wireless sensor network is limited and short. Therefore, reducing the energy consumption of sensors in IoT networks for increasing network lifespan is one of the fundamental challenges and issues in these networks. In this paper, a routing protocol is proposed and simulated based on an ant colony optimization algorithm’s performance. The clustering is performed with a routing method based on energy level criteria, collision reduction, distance from the cluster-head to the destination, and neighborhood energy in the proposed method. The cluster head is selected based on the maximum residual energy, minimum distance with other clusters, and consumed energy. This energy is minimized to reach the base station. The node with more energy than the threshold is selected as the new cluster head. Then, four conditions are applied for routing: the shortest path, the leading path, the shortest distance to the source node and the destination node, and routing. Results show that after about 50 cycles of transferring information, only the average of 19.4% of the initial energy is consumed in the network nodes. Therefore, obtained results illustrate that the proposed method helps to retain the energy more than 40% comparing the available methods.


2021 ◽  
Vol 1 (1) ◽  
pp. 70-82
Author(s):  
Amnah A. Saadi ◽  
Osama A. Awad

Wireless Sensor Networks require energy-efficient protocols for communication and data fusion to integrate data and extend the lifetime of the network. An efficient clustering algorithm for sensor nodes will optimize the energy efficiency of  WSNs. However, the clustering process requires additional overhead, such as selection of cluster head, cluster creation, and deployment. This paper prepared a modified ZRP  for mobile WSN  clustering scheme and optimization using ant-lion optimization algorithm and so far named as mobility cluster head fuzzy logic based on the zone routing protocol (ZRP-FMC-ALO). Which proposed fuzzy logic approach based on three descriptors node for the selection of the CH nodes such as, residual energy, the concentration, and the centrality of the node and also exploited the concept of the mobility of the  Base Station (BS) to prolong the life span of a WSN. The performance of the proposed protocol compared with the famous protocol such as LEACH. Using the MATLAB simulator and the result shows that it outperforms in terms of the WSN network lifetime, the average remaining-consuming energy, and the number of a live node.  


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 448
Author(s):  
Yumi Kim ◽  
Mincheol Paik ◽  
Bokyeong Kim ◽  
Haneul Ko ◽  
Seung-Yeon Kim

In a non-orthogonal multiple access (NOMA) environment, an Internet of Things (IoT) device achieves a high data rate by increasing its transmission power. However, excessively high transmission power can cause an energy outage of an IoT device and have a detrimental effect on the signal-to-interference-plus-noise ratio of neighbor IoT devices. In this paper, we propose a neighbor-aware NOMA scheme (NA-NOMA) where each IoT device determines whether to transmit data to the base station and the transmission power at each time epoch in a distributed manner with the consideration of its energy level and other devices’ transmission powers. To maximize the aggregated data rate of IoT devices while keeping an acceptable average energy outage probability, a constrained stochastic game model is formulated, and the solution of the model is obtained using a best response dynamics-based algorithm. Evaluation results show that NA-NOMA can increase the average data rate up to 22% compared with a probability-based scheme while providing a sufficiently low energy outage probability (e.g., 0.05).


Sign in / Sign up

Export Citation Format

Share Document