scholarly journals Study on Ecological Allocation of Mine Water in Mining Area based on Long Term Rainfall Forecast

Author(s):  
lei guanjun ◽  
Changshun Liu ◽  
wenchuan wang ◽  
Jun-xian Yin ◽  
Hao Wang

Abstract Based on the mine water produced by mining, in order to improve the ecological environment, the optimal allocation of mine water resources is studied. In order to reduce the uncertainty of the calculation results of ecological water demand, the wolf colony algorithm neural network model is used for long-term rainfall forecast. Combined with the forecast annual rainfall, the ecological water demand is classified and calculated. The results show that the ecological water demand based on rainfall forecast can reduce the allocation of water resources in wet years to ecological aspects, so that the surplus water resources can be used in industries, irrigation and other aspects that can create economic benefits, and improve the utilization efficiency of water resources. The ecological allocation model of mine water based on long-term rainfall forecast can reduce the uncertainty of regional water resources allocation based on rainfall forecast, which has good guiding significance and practical value for the optimal allocation of water resources in arid and water shortage areas.

Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2018 ◽  
Vol 19 (4) ◽  
pp. 1044-1054 ◽  
Author(s):  
Baohui Men ◽  
Zhijian Wu ◽  
Huanlong Liu ◽  
Zehua Hu ◽  
Yangsong Li

Abstract Water shortages and the deterioration of water quality in the natural environment have a negative effect on social development of many countries. Therefore, optimizing the allocation of water resources has become an important research topic in water resources planning and management. An essential step in improving the utilization efficiency of water resources is the prediction of water supply and demand. Because it has a great number of merits, the grey prediction method has been widely used in population prediction and temperature prediction. However, it also has limitations such as low prediction precision since original data seriously fluctuates. This paper aims to handle the sample values by an innovative method utilizing moving-average technique (MA) model and optimizing the background values to make them more typical. Results proved that the prediction accuracy of the traditional model was effectively improved by the proposed method. The proposed model was then applied in the multi-objective planning to establish an optimal water resources allocation model for Beijing in the short-term (2020) planning timeframe, including local water resources, transfer water volumes, and other water supplies. The results indicated that industrial and agricultural water use could be well met, while domestic and environmental water resources may face a shortage.


2021 ◽  
Vol 260 ◽  
pp. 01004
Author(s):  
Zhen Zhang ◽  
Panyue Zhang ◽  
Guangming Zhang

With the development of mining area economy and the adjustment of industrial structure from traditional heavy industry to hightech industry, the supply and demand structure of water resources has changed significantly, and the ecological damage in mining area make the ecological water consumption increase significantly. This paper summarizes the water supply of surface water, groundwater, mine drainage and reclaimed water, as well as all kinds of water demand. Based on the principle of ecological priority, a multi-objective optimal allocation model for the coordinated development of ecological environment, social economy and water resources in Yangchangwan mining area was constructed. The results show that the multi-objective optimal allocation model well coordinated the social and economic development goals and resource saving goals, and the optimization scheme ensured that the water demand satisfaction of each water sector reached 100%. On the one hand, it can provide technical support for the mining area to realize the green water and green mountains pattern as soon as possible, on the other hand, it can also provide reference for water resources management in other similar areas.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254547
Author(s):  
Yang Li ◽  
Jiancang Xie ◽  
Rengui Jiang ◽  
Dongfei Yan

The purposes are to use water resources efficiently and ensure the sustainable development of social water resources. The edge computing technology and GIS (Geographic Information Science) image data are combined from the perspective of sustainable development. A prediction model for the water resources in the irrigation area is constructed. With the goal of maximizing comprehensive benefits, the optimal allocation of water quality and quantity of water resources is determined. Finally, the actual effect of the model is verified through specific instance data in a province. Results demonstrate that the proposed irrigation area ecological prediction model based on edge computing and GIS images can provide better performance than other state of the art models on water resources prediction. Specifically, the accuracy can remain above 90%. The proposed model for ecological water demand prediction in the irrigation area and optimal allocation of water resources is based on the principle of quality water supply. The optimal allocation of water resources reveals the sustainable development ideas and the requirements of the optimal allocation model, which is very reasonable. The improvement of the system is effective and feasible, and the optimal allocation results are reasonable. This allocation model aims at the water quality and quantity conditions, water conservancy project conditions, and specific water demand requirements in the study area. The calculation results have great practicability and a strong guiding significance for the sustainable utilization and management of the irrigation area.


2013 ◽  
Vol 448-453 ◽  
pp. 995-1001
Author(s):  
Ning Na Wang ◽  
Qin Lin Zhou

An effective management of water supply is critically significant to a countrys water utilities, and accurate prediction of water supply and demand is of key importance for water supply management. The objectives of this paper are to use Grey System Model (GSM) and Linear Regression Model to forecast the water demand and water supply respectively in China 2025, and then propose a new Optimal Allocation Model (OAM) to generate solution so that analysts and decision makers can gain insight and understanding. The two predictive models take into account four major factors including domestic development, agriculture, industries and eco-environment, calculating a deficit between water demand and water supply in China 2025. Then the OAM, which considers desalinization, irrigation saving and urban recycling, provides a feasible solution to fill the gap and an effectual management of water supply.


2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1289 ◽  
Author(s):  
Huaxiang He ◽  
Aiqi Chen ◽  
Mingwan Yin ◽  
Zhenzhen Ma ◽  
Jinjun You ◽  
...  

The rational allocation of water resources in the basin/region can be better assisted and performed using a suitable water resources allocation model. Rule-based and optimization-based simulation methods are utilized to solve medium- and long-term water resources allocation problems. Since rule-based allocation methods requires more experience from expert practice than optimization-based allocation methods, it may not be utilized by users that lack experience. Although the optimal solution can be obtained via the optimization-based allocation method, the highly skilled expert experience is not taken into account. To overcome this deficiency and employ the advantages of both rule-based and optimization-based simulation methods, this paper proposes the optimal allocation model of water resources where the highly skilled expert experience has been considered therein. The “prospect theory” is employed to analyze highly skilled expert behavior when decision-making events occur. The cumulative prospect theory value is employed to express the highly skilled expert experience. Then, the various elements of the cumulative prospect theory value can be taken as the variables or parameters in the allocation model. Moreover, the optimal water allocation model developed by the general algebraic modeling system (GAMS) has been improved by adding the decision reversal control point and defining the inverse objective function and other constraints. The case study was carried out in the Wuyur River Basin, northeast of China, and shows that the expert experience considered as the decision maker’s preference can be expressed in the improved optimal allocation model. Accordingly, the improved allocation model will contribute to improving the rationality of decision-making results and helping decision-makers better address the problem of water shortage.


2012 ◽  
Vol 518-523 ◽  
pp. 4165-4170
Author(s):  
Xiao Yu Song ◽  
Huai You Li ◽  
Wen Juan Shi

In this paper, based on the fact of water resources shortage, environmental degradation in Chanba River basin, using multi-objective optimization theory, we established the ecology-oriented water resources optimal allocation model and achieved the coupling between water quantity and quality. According to supply and demand of water resources in two levels of years (2020, 2030) and the guaranteed rate 75%, developed model parameters (coefficients), called the optimization function to solve it. The model is applied to Chanba River basin, indicating that the model is reasonable, efficient algorithms The optimal allocation model and the results reflect the concept of sustainable development for ecological, economic efficiency and help to improve water supply reliability, the sustainable use of water resources planning and management provides a basis for decision making.


Author(s):  
Ruihuan Li ◽  
Yingli Chang ◽  
Zhaocai Wang

Abstract In order to distribute water resources reasonably, it is convenient to make full use of resources and produce high economic and social benefits. Taking the Dujiangyan irrigation area of China as an example, we discuss the idea of establishing and solving the optimal allocation model of water resources. Aiming at this area, a two-dimensional constraint model with the highest economic value, the minimum water shortage, the minimum underground water consumption and the necessary living water demand is established. In order to solve this model, we improve the multi-population genetic algorithm, extend the genetic optimization of the algorithm into two dimensions, take the population as the vertical dimension and the individual as the horizontal dimension, and transforms the cross genetic operator to copy the genetic operator and the mutation operator to only act on the vertical dimension, so as to optimize the allocation of such discrete objectives of water resources in the irrigation area with the particular model suitable for the region. The distribution results successfully control the water shortage rate of each area at a low level, which save the exploitation of groundwater to the maximum extent and produce high economic benefits. The improved algorithm proposed in this paper has a kind of strong optimization ability and provides a new solution for the optimization problem with multiple constraints.


2018 ◽  
Vol 246 ◽  
pp. 02054
Author(s):  
Hengyue Yang ◽  
Shaohui Zhang ◽  
Wei Dai ◽  
Yinong Li ◽  
Xin Zeng

the water cycle in irrigation districts is extremely complicated under the dual influence of strong human activities and the nature. To establish the multi-water source rational allocation model of irrigation district, this paper first establish a multi-objective function based on economic utility, ecological utility and irrigation performance and improve Hicks optimization method. Then, combine it with chaotic particle swarm optimization algorithm to carry out research on temporal and spatial distribution evolution and optimal allocation of water resources in irrigation districts and collaborative scheduling and regulation of surface-groundwater. The multi-objective rational allocation is an important basis for the efficient use of water resources in irrigation districts and ecological harmony. This paper takes the typical irrigation area of Dongxiezong in Heilongjiang Province as the object for the study of the optimal allocation method of water resources in the irrigation district.


Sign in / Sign up

Export Citation Format

Share Document