scholarly journals The Plasma Amyloid Beta 42 (Aβ42) and Proteomics Profile Related to Canine Cognitive Dysfunction Syndrome (CCDS) in Thailand

2020 ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification.Results: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 45 and 52 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p = 0.125, R2 = 0.27).Conclusions: Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification. Results Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p = 0.131, R2 = 0.261). Conclusions Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis. Further study in larger population-based cohort study is required in validation to define the correlation between protein expression and the pathogenesis of CCDS.


2021 ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification.Results: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p=0.131, R2=0.261).Conclusions: Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis. Further study in larger population-based cohort study is required in validation to define the correlation between protein expression and the pathogenesis of CCDS.


2020 ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification. Results: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p=0.131, R2=0.261).Conclusions: Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 887-887
Author(s):  
Silvan Urfer ◽  
Martin Darvas ◽  
Dirk Keene ◽  
Kálman Czeibert ◽  
Enikő Kubinyi ◽  
...  

Abstract The privately owned companion dog is an increasingly important model in aging research because it shares the human environment, is exposed to similar environmental risk factors, receives comparable medical care, and develops many of the same age-related pathologies. One such pathology is Canine Cognitive Dysfunction (CCD), which shares many of the clinical features of human Alzheimer’s Disease (AD), including progressive loss of cognitive function, loss of normal sleep patterns, increased anxiety, and aimless wandering. Amyloid-beta 42 (Aβ42) plaques similar to these found in humans with AD are known to naturally occur in the brains of aged dogs, making them an intriguing potential model for AD in humans. As part of the Dog Aging Project (www.dogagingproject.org), we studied frozen samples taken from the frontal cortex, medial temporal cortex, entorhinal cortex, and hippocampus of n=24 companion dogs of various ages that were euthanized for unrelated health reasons and donated by their owners. Brains were removed and frozen within 4 hours post mortem. Using a novel quantitative Luminex assay, we found a significant correlation between age and Aβ42 levels in all of these brain regions, as well as a significant correlation between Aβ42 levels and cognitive function scores as measured by the Canine Cognitive Dysfunction Scale. We will now investigate histopathology in the same dogs and brain regions, and investigate whether we can also measure Tau and pTau in these samples using Luminex and mass spectrometry.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chris Pickering ◽  
Mia Ericson ◽  
Bo Söderpalm

Phencyclidine (PCP) mimics many aspects of schizophrenia, yet the underlying mechanism of neurochemical adaptation for PCP is unknown. We therefore used proteomics to study changes in the medial prefrontal cortex in animals with PCP-induced behavioural deficits. Male Wistar rats were injected with saline or 5 mg/kg phencyclidine for 5 days followed by two days of washout. Spontaneous alternation behaviour was tested in a Y-maze and then proteins were extracted from the medial prefrontal cortex. 2D-DIGE analysis followed by spot picking and protein identification with mass spectrometry then provided a list of differentially expressed proteins. Treatment with 5 mg/kg phencyclidine decreased the percentage of correct alternations in the Y-maze compared to saline-treated controls. Proteomics analysis of the medial prefrontal cortex found upregulation of 6 proteins (synapsin-1, Dpysl3, Aco2, Fscn1, Tuba1c, and Mapk1) and downregulation of 11 (Bin1, Dpysl2, Sugt1, ApoE, Psme1, ERp29, Pgam1, Uchl1, Ndufv2, Pcmt1, and Vdac1). A trend to upregulation was observed for Gnb4 and Capza2, while downregulation trends were noted for alpha-enolase and Fh. Many of the hits in this study concur with recent postmortem data from schizophrenic patients and this further validates the use of phencyclidine in preclinical translational research.


Author(s):  
Silvan R. Urfer ◽  
Martin Darvas ◽  
Kálmán Czeibert ◽  
Sára Sándor ◽  
Daniel E. L. Promislow ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-yi Kuai ◽  
Xiao-han Yao ◽  
Li-juan Xu ◽  
Yu-qing Zhou ◽  
Li-ping Zhang ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder and 70–80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


2004 ◽  
Vol 100 (6) ◽  
pp. 997-1001 ◽  
Author(s):  
Mitsuhiro Ogura ◽  
Naoyuki Nakao ◽  
Ekini Nakai ◽  
Yuji Uematsu ◽  
Toru Itakura

Object. Although chronic electrical stimulation of the globus pallidus (GP) has been shown to ameliorate motor disabilities in Parkinson disease (PD), the underlying mechanism remains to be clarified. In this study the authors explored the mechanism for the effects of deep brain stimulation of the GP by investigating the changes in neurotransmitter levels in the cerebrospinal fluid (CSF) during the stimulation. Methods. Thirty patients received chronic electrical stimulation of the GP internus (GPi). Clinical effects were assessed using the Unified PD Rating Scale (UPDRS) and the Hoehn and Yahr Staging Scale at 1 week before surgery and at 6 and 12 months after surgery. One day after surgery, CSF samples were collected through a ventricular tube before and 1 hour after GPi stimulation. The concentration of neurotransmitters such as γ-aminobutyric acid (GABA), noradrenaline, dopamine, and homovanillic acid (HVA) in the CSF was measured using high-performance liquid chromatography. The treatment was effective for tremors, rigidity, and drug-induced dyskinesia. The concentration of GABA in the CSF increased significantly during stimulation, although there were no significant changes in the level of noradrenaline, dopamine, and HVA. A comparison between an increased rate of GABA concentration and a lower UPDRS score 6 months postimplantation revealed that the increase in the GABA level correlated with the stimulation-induced clinical effects. Conclusions. Stimulation of the GPi substantially benefits patients with PD. The underlying mechanism of the treatment may involve activation of GABAergic afferents in the GP.


Sign in / Sign up

Export Citation Format

Share Document