scholarly journals Change in the plasma proteome associated with canine cognitive dysfunction syndrome (CCDS) in Thailand

2020 ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification. Results: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p=0.131, R2=0.261).Conclusions: Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification. Results Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p = 0.131, R2 = 0.261). Conclusions Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis. Further study in larger population-based cohort study is required in validation to define the correlation between protein expression and the pathogenesis of CCDS.


2021 ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification.Results: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 48 and 41 proteins were changed in the ageing and adult groups, Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p=0.131, R2=0.261).Conclusions: Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis. Further study in larger population-based cohort study is required in validation to define the correlation between protein expression and the pathogenesis of CCDS.


2020 ◽  
Author(s):  
Sataporn Phochantachinda ◽  
Boonrat Chantong ◽  
Onrapak Reamtong ◽  
Duangthip Chatchaisak

Abstract Background: Canine cognitive dysfunction syndrome (CCDS) is a progressive neurodegenerative disorder found in senior dogs. Due to the lack of biological markers, CCDS is commonly underdiagnosed. The aim of this study was to identify potential plasma biomarkers using proteomics techniques and to increase our understanding of the pathogenic mechanism of the disease. Plasma amyloid beta 42 (Aβ42) has been seen to be a controversial biomarker for CCDS. Proteomics analysis was performed for protein identification and quantification.Results: Within CCDS, ageing, and adult dogs, 87 proteins were identified specific to Canis spp. in the plasma samples. Of 87 proteins, 45 and 52 proteins were changed in the ageing and adult groups, respectively. Several distinctly expressed plasma proteins identified in CCDS were involved in complement and coagulation cascades and the apolipoprotein metabolism pathway. Plasma Aβ42 levels considerably overlapped within the CCDS and ageing groups. In the adult group, the Aβ42 level was low compared with that in the other groups. Nevertheless, plasma Aβ42 did not show a correlation with the Canine Cognitive Dysfunction Rating scale (CCDR) score in the CCDS group (p = 0.125, R2 = 0.27).Conclusions: Our present findings suggest that plasma Aβ42 does not show potential for use as a diagnostic biomarker in CCDS. The nano-LC-MS/MS data revealed that the predictive underlying mechanism of CCDS was the co-occurrence of inflammation-mediated acute phase response proteins and complement and coagulation cascades that partly functioned by apolipoproteins and lipid metabolism. Some of the differentially expressed proteins may serve as potential predictor biomarkers along with Aβ42 in plasma for improved CCDS diagnosis.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chris Pickering ◽  
Mia Ericson ◽  
Bo Söderpalm

Phencyclidine (PCP) mimics many aspects of schizophrenia, yet the underlying mechanism of neurochemical adaptation for PCP is unknown. We therefore used proteomics to study changes in the medial prefrontal cortex in animals with PCP-induced behavioural deficits. Male Wistar rats were injected with saline or 5 mg/kg phencyclidine for 5 days followed by two days of washout. Spontaneous alternation behaviour was tested in a Y-maze and then proteins were extracted from the medial prefrontal cortex. 2D-DIGE analysis followed by spot picking and protein identification with mass spectrometry then provided a list of differentially expressed proteins. Treatment with 5 mg/kg phencyclidine decreased the percentage of correct alternations in the Y-maze compared to saline-treated controls. Proteomics analysis of the medial prefrontal cortex found upregulation of 6 proteins (synapsin-1, Dpysl3, Aco2, Fscn1, Tuba1c, and Mapk1) and downregulation of 11 (Bin1, Dpysl2, Sugt1, ApoE, Psme1, ERp29, Pgam1, Uchl1, Ndufv2, Pcmt1, and Vdac1). A trend to upregulation was observed for Gnb4 and Capza2, while downregulation trends were noted for alpha-enolase and Fh. Many of the hits in this study concur with recent postmortem data from schizophrenic patients and this further validates the use of phencyclidine in preclinical translational research.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiao-yi Kuai ◽  
Xiao-han Yao ◽  
Li-juan Xu ◽  
Yu-qing Zhou ◽  
Li-ping Zhang ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder and 70–80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


2004 ◽  
Vol 100 (6) ◽  
pp. 997-1001 ◽  
Author(s):  
Mitsuhiro Ogura ◽  
Naoyuki Nakao ◽  
Ekini Nakai ◽  
Yuji Uematsu ◽  
Toru Itakura

Object. Although chronic electrical stimulation of the globus pallidus (GP) has been shown to ameliorate motor disabilities in Parkinson disease (PD), the underlying mechanism remains to be clarified. In this study the authors explored the mechanism for the effects of deep brain stimulation of the GP by investigating the changes in neurotransmitter levels in the cerebrospinal fluid (CSF) during the stimulation. Methods. Thirty patients received chronic electrical stimulation of the GP internus (GPi). Clinical effects were assessed using the Unified PD Rating Scale (UPDRS) and the Hoehn and Yahr Staging Scale at 1 week before surgery and at 6 and 12 months after surgery. One day after surgery, CSF samples were collected through a ventricular tube before and 1 hour after GPi stimulation. The concentration of neurotransmitters such as γ-aminobutyric acid (GABA), noradrenaline, dopamine, and homovanillic acid (HVA) in the CSF was measured using high-performance liquid chromatography. The treatment was effective for tremors, rigidity, and drug-induced dyskinesia. The concentration of GABA in the CSF increased significantly during stimulation, although there were no significant changes in the level of noradrenaline, dopamine, and HVA. A comparison between an increased rate of GABA concentration and a lower UPDRS score 6 months postimplantation revealed that the increase in the GABA level correlated with the stimulation-induced clinical effects. Conclusions. Stimulation of the GPi substantially benefits patients with PD. The underlying mechanism of the treatment may involve activation of GABAergic afferents in the GP.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Kai Li ◽  
Wen Su ◽  
Shu-Hua Li ◽  
Ying Jin ◽  
Hai-Bo Chen

Cognitive impairment is a common disabling symptom in PD. Unlike motor symptoms, the mechanism underlying cognitive dysfunction in Parkinson’s disease (PD) remains unclear and may involve multiple pathophysiological processes. Resting state functional magnetic resonance imaging (rs-fMRI) is a fast-developing research field, and its application in cognitive impairments in PD is rapidly growing. In this review, we summarize rs-fMRI studies on cognitive function in PD and discuss the strong potential of rs-fMRI in this area. rs-fMRI can help reveal the pathophysiology of cognitive symptoms in PD, facilitate early identification of PD patients with cognitive impairment, distinguish PD dementia from dementia with Lewy bodies, and monitor and guide treatment for cognitive impairment in PD. In particular, ongoing and future longitudinal studies would enhance the ability of rs-fMRI in predicting PD dementia. In combination with other modalities such as positron emission tomography, rs-fMRI could give us more information on the underlying mechanism of cognitive deficits in PD.


BioTechniques ◽  
2021 ◽  
Author(s):  
David Kotol ◽  
Andreas Hober ◽  
Linnéa Strandberg ◽  
Anne-Sophie Svensson ◽  
Mathias Uhlén ◽  
...  

Targeted proteomics is an attractive approach for the analysis of blood proteins. Here, we describe a novel analytical platform based on isotope-labeled recombinant protein standards stored in a chaotropic agent and subsequently dried down to allow storage at ambient temperature. This enables a straightforward protocol suitable for robotic workstations. Plasma samples to be analyzed are simply added to the dried pellet followed by enzymatic treatment and mass spectrometry analysis. Here, we show that this approach can be used to precisely (coefficient of variation <10%) determine the absolute concentrations in human plasma of hundred clinically relevant protein targets, spanning four orders of magnitude, using simultaneous analysis of 292 peptides. The use of this next-generation analytical platform for high-throughput clinical proteome profiling is discussed.


2006 ◽  
Vol 9 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Chandra A. Reynolds ◽  
Amy Fiske ◽  
Laura Fratiglioni ◽  
Nancy L. Pedersen ◽  
Margaret Gatz

AbstractWe investigated the extent to which cognitive dysfunction is shaped by genetic or environmental influences, and whether these factors differ in women and men. All members of the Swedish Twin Registry aged 65 and older were screened by telephone using the TELE, a brief cognitive assessment instrument (Gatz et al., 2002), and the Blessed Dementia Rating Scale (Blessed et al., 1968) from relatives of those who scored poorly on the TELE. Data were available for 4308 pairs where both members responded and 5070 pairs where only one member was alive and participated. To analyze all available data, we used a raw data method extended to ordinal data. As the prevalence of cognitive dysfunction increases with age, we incorporated age-adjusted thresholds. The best fitting model from biometric analyses indicated 35% of the variation in liability to cognitive dysfunction could be explained by heritable influences and the remaining 65% by nonfamilial environmental influences. Differences by gender were not significant. As this is a normative population including cognitively intact individuals, preclinical dementia cases and demented individuals, the relative magnitude of genetic and environmental effects is of particular interest in light of high heritabilities found for dementias such as Alzheimer's disease. The findings emphasize the extent to which research is needed to uncover nonfamilial environmental influences on cognitive dysfunction in later life.


2018 ◽  
Vol 18 (2-3) ◽  
pp. 127-132 ◽  
Author(s):  
Jeong-Yoon Lee ◽  
Ji Sun Kim ◽  
Wooyoung Jang ◽  
Jinse Park ◽  
Eungseok Oh ◽  
...  

Background: There are only few studies exploring the relationship between white matter lesions (WMLs) and non-motor symptoms in Parkinson disease (PD). This study aimed to investigate the association between WMLs and the severity of non-motor symptoms in PD. Methods: The severity of motor dysfunction, cognitive impairment, and non-motor symptoms was assessed by various scales in 105 PD patients. We used a visual semiquantitative rating scale and divided the subjects into four groups: no, mild, moderate, and severe WMLs. We compared the means of all scores between the four groups and analyzed the association between the severity of WMLs and the specific domain of non-motor symptoms. Results: The non-motor symptoms as assessed by the Non-Motor Symptoms Scale, Parkinson’s Disease Questionnaire (PDQ-39), Parkinson’s Disease Sleep Scale, Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Neuropsychiatric Inventory (NPI), and Parkinson Fatigue Scale (PFS) were significantly worse in the patients with moderate and severe WMLs than in those without WMLs. Compared with the no WML group, the scores for motor dysfunction were significantly higher in the mild, moderate, and severe WML groups. The scores for cognitive dysfunction were significantly higher in the patients with severe WMLs than in those without WMLs. The severity of WMLs showed linear associations with PFS, BDI, BAI, NPI, and PDQ-39 scores. The severity of WMLs also correlated linearly with scores for motor and cognitive dysfunction. Conclusions: Among the non-motor symptoms, fatigue, depression, anxiety, and quality of life were significantly affected by WMLs in PD. Confirmation of the possible role of WMLs in non-motor symptoms associated with PD in a prospective manner may be crucial not only for understanding non-motor symptoms but also for the development of treatment strategies.


Sign in / Sign up

Export Citation Format

Share Document